stm32f407和hc-sr501生成代码
时间: 2023-10-05 09:09:07 浏览: 98
stm32f407是一款基于ARM Cortex-M4内核的微控制器,具有高性能、低功耗和丰富的外设接口等特点,广泛应用于嵌入式系统开发中。而HC-SR501是一款基于红外线技术的人体感应模块,可以检测人体的热辐射信号,从而实现对人体的检测和跟踪等功能。
如果你想使用STM32F407控制HC-SR501模块,可以使用STM32CubeMX软件进行初始化配置,生成相应的工程代码,在工程中添加HC-SR501控制代码,并通过串口或其他方式输出检测结果。具体的代码实现需要根据具体的需求和硬件连接情况进行编写。
相关问题
用HC-SR501检测人接近,控制L9110风扇模块启动,用DHT11检测环境温度,调整风扇转速,人离开后关闭风扇,STM32F103ZET6生成代码
以下是使用HC-SR501、L9110和DHT11进行人体接近检测和风扇调速的STM32F103ZET6代码:
```c
#include "dht11.h"
#include "delay.h"
#include "stm32f10x.h"
#define FAN_CONTROL_PIN GPIO_Pin_8
#define FAN_CONTROL_PORT GPIOB
#define MOTION_DETECTION_PIN GPIO_Pin_0
#define MOTION_DETECTION_PORT GPIOB
uint16_t DHT11_Temperature = 0;
uint16_t DHT11_Humidity = 0;
uint16_t fan_speed = 0;
void init_GPIO(void);
void init_TIM1(void);
void init_USART1(void);
void delay_ms(uint16_t ms);
int main(void)
{
init_GPIO();
init_TIM1();
init_USART1();
DHT11_Init();
while (1)
{
uint8_t motion_detected = GPIO_ReadInputDataBit(MOTION_DETECTION_PORT, MOTION_DETECTION_PIN);
if (motion_detected)
{
fan_speed = 1000;
TIM_SetCompare1(TIM1, fan_speed);
delay_ms(1000);
DHT11_Read_Data(&DHT11_Temperature, &DHT11_Humidity);
if (DHT11_Temperature > 280)
{
fan_speed = 2000;
TIM_SetCompare1(TIM1, fan_speed);
}
else if (DHT11_Temperature > 260)
{
fan_speed = 1500;
TIM_SetCompare1(TIM1, fan_speed);
}
else if (DHT11_Temperature > 240)
{
fan_speed = 1000;
TIM_SetCompare1(TIM1, fan_speed);
}
else
{
fan_speed = 0;
TIM_SetCompare1(TIM1, fan_speed);
}
}
else
{
fan_speed = 0;
TIM_SetCompare1(TIM1, fan_speed);
}
}
}
void init_GPIO(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
GPIO_InitStructure.GPIO_Pin = FAN_CONTROL_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(FAN_CONTROL_PORT, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = MOTION_DETECTION_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(MOTION_DETECTION_PORT, &GPIO_InitStructure);
}
void init_TIM1(void)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
TIM_TimeBaseStructure.TIM_Period = 40000 - 1;
TIM_TimeBaseStructure.TIM_Prescaler = 72 - 1;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 0;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC1Init(TIM1, &TIM_OCInitStructure);
TIM_Cmd(TIM1, ENABLE);
}
void delay_ms(uint16_t ms)
{
while (ms--)
{
delay_us(1000);
}
}
void USART1_IRQHandler(void)
{
if (USART_GetITStatus(USART1, USART_IT_RXNE) != RESET)
{
uint8_t data = USART_ReceiveData(USART1);
USART_SendData(USART1, data);
}
}
```
需要注意的是,此代码中使用了DHT11库和延时库,需要自行下载并添加到项目中。此外,需要在STM32CubeMX中配置USART1串口和GPIOB的PB6和PB7引脚作为串口通信使用。
使用STM32F103ZET6和HC-SR04开发超声波测距
步骤如下:
1.连接硬件:将HC-SR04的VCC接到STM32F103ZET6的5V,GND接到GND,Trig接到STM32F103ZET6的PB10,Echo接到STM32F103ZET6的PB11。
2.配置STM32F103ZET6的GPIO:将PB10配置为输出模式,PB11配置为输入模式。
3.编写程序:使用定时器来生成10us的高电平,然后将Trig引脚拉高,等待10us后拉低。然后等待Echo引脚变高,开始计时,直到Echo引脚变低,停止计时。根据计时器的值计算距离并输出到串口。
下面是代码示例:
```
#include "stm32f10x.h"
#include "stdio.h"
#define TRIG_PIN GPIO_Pin_10
#define ECHO_PIN GPIO_Pin_11
#define TRIG_PORT GPIOB
#define ECHO_PORT GPIOB
void TIM3_init(void)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStruct;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
TIM_TimeBaseInitStruct.TIM_Prescaler = (SystemCoreClock/1000000) - 1; //1us per tick
TIM_TimeBaseInitStruct.TIM_Period = 0xFFFF;
TIM_TimeBaseInitStruct.TIM_ClockDivision = 0;
TIM_TimeBaseInitStruct.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseInitStruct);
TIM_Cmd(TIM3, ENABLE);
}
void delay_us(uint32_t us)
{
TIM_SetCounter(TIM3, 0);
while(TIM_GetCounter(TIM3) < us);
}
float get_distance(void)
{
uint32_t time_start, time_end;
float distance;
GPIO_ResetBits(TRIG_PORT, TRIG_PIN);
delay_us(2);
GPIO_SetBits(TRIG_PORT, TRIG_PIN);
delay_us(10);
GPIO_ResetBits(TRIG_PORT, TRIG_PIN);
while(GPIO_ReadInputDataBit(ECHO_PORT, ECHO_PIN) == RESET);
time_start = TIM_GetCounter(TIM3);
while(GPIO_ReadInputDataBit(ECHO_PORT, ECHO_PIN) == SET);
time_end = TIM_GetCounter(TIM3);
if(time_end > time_start)
{
distance = (float)(time_end - time_start) * 0.017; //calculate distance in cm
}
else
{
distance = 0;
}
return distance;
}
int main(void)
{
USART_InitTypeDef USART_InitStruct;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB | RCC_APB2Periph_AFIO | RCC_APB2Periph_USART1, ENABLE);
GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitStruct.GPIO_Pin = TRIG_PIN;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(TRIG_PORT, &GPIO_InitStruct);
GPIO_InitStruct.GPIO_Pin = ECHO_PIN;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IPU;
GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(ECHO_PORT, &GPIO_InitStruct);
USART_InitStruct.USART_BaudRate = 115200;
USART_InitStruct.USART_WordLength = USART_WordLength_8b;
USART_InitStruct.USART_StopBits = USART_StopBits_1;
USART_InitStruct.USART_Parity = USART_Parity_No;
USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStruct.USART_Mode = USART_Mode_Tx;
USART_Init(USART1, &USART_InitStruct);
USART_Cmd(USART1, ENABLE);
TIM3_init();
while(1)
{
float distance = get_distance();
printf("Distance: %.2f cm\n", distance);
delay_us(500000);
}
}
```
阅读全文