src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1,1,2)
时间: 2023-04-03 10:04:16 浏览: 419
这是一个关于 Python 编程的问题,我可以回答。这行代码是将匹配的关键点的坐标提取出来,并将其转换为一个 Numpy 数组。其中,kp1 是第一张图片的关键点,good 是匹配的关键点。reshape 函数将数组转换为一个三维数组,其中第一维表示关键点的数量,第二维表示每个关键点的坐标数量,第三维表示每个坐标的维度。
相关问题
MIN_MATCH_COUNT = 10 good12 = [] for m, n in matches12: if m.distance < 0.7 * n.distance: good12.append(m) if len(good12) > MIN_MATCH_COUNT: src_pts = np.float32([kp1[m.queryIdx].pt for m in good12]).reshape(-1, 1, 2) dst_pts = np.float32([kp2[m.trainIdx].pt for m in good12]).reshape(-1, 1, 2) K = np.array([[1000, 0, img1.shape[1] / 2], [0, 1000, img1.shape[0] / 2], [0, 0, 1]]) _, rvec12, tvec12, inliers = cv2.solvePnPRansac(dst_pts, src_pts, K, np.zeros((4, 1))) else: print("Not enough matches are found - {}/{}".format(len(good12), MIN_MATCH_COUNT)) good23 = [] for m, n in matches23: if m.distance < 0.7 * n.distance: good23.append(m) if len(good23) > MIN_MATCH_COUNT: src_pts = np.float32([kp2[m.queryIdx].pt for m in good23]).reshape(-1, 1, 2) dst_pts = np.float32([kp3[m.trainIdx].pt for m in good23]).reshape(-1, 1, 2) K = np.array([[1000, 0, img2.shape[1] / 2], [0, 1000, img2.shape[0] / 2], [0, 0, 1]]) _, rvec23, tvec23, inliers = cv2.solvePnPRansac(dst_pts, src_pts, K, np.zeros((4, 1))) else: print("Not enough matches are found - {}/{}".format(len(good23), MIN_MATCH_COUNT)) 报错OpenCV(4.7.0) /io/opencv/modules/calib3d/src/solvepnp.cpp:242: error: (-215:Assertion failed) npoints >= 4 && npoints == std::max(ipoints.checkVector(2, CV_32F), ipoints.checkVector(2, CV_64F)) in function 'solvePnPRansac'
这个错误通常是由于输入的点数不足导致的。solvePnPRansac函数需要输入至少四个点,以估计相机的位姿。请检查你的输入点数是否符合要求。同时也可以检查点的数据类型是否正确,应该是CV_32F或CV_64F类型的二维向量。
在你的代码中,错误发生在solvePnPRansac函数中,可能是因为dst_pts或src_pts的维度不正确造成的。你可以检查一下这两个数组的shape是否正确。此外,你可以尝试将dst_pts和src_pts的维度改为(2, N),其中N为匹配点的数量,看看是否有改善。
如果还有问题,请提供更多的代码和具体错误信息,我会尽力帮你解决。
改进这段代码,使其输出匹配点连线图并对图像进行拼接输出全景图:import cv2 # 读入需要配准的两张图像 img1 = cv2.imread('image1.jpg') img2 = cv2.imread('image2.jpg') # 将图像转换为灰度图像 gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) # 使用 Shi-Tomasi 算法寻找关键点并计算特征描述子 sift = cv2.xfeatures2d.SIFT_create() kp1, des1 = sift.detectAndCompute(gray1, None) kp2, des2 = sift.detectAndCompute(gray2, None) # 使用 FLANN 匹配器进行特征匹配 FLANN_INDEX_KDTREE = 0 index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) search_params = dict(checks=50) flann = cv2.FlannBasedMatcher(index_params, search_params) matches = flann.knnMatch(des1, des2, k=2) # 选择好的匹配点 good = [] for m, n in matches: if m.distance < 0.7 * n.distance: good.append(m) # 获取匹配点对应的坐标 src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2) dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2) # 使用 RANSAC 算法进行配准 M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) # 对第一张图像进行变换并输出结果 result = cv2.warpPerspective(img1, M, (img1.shape[1], img1.shape[0])) cv2.imshow('result', result) cv2.waitKey(0) cv2.destroyAllWindows()
import cv2
import numpy as np
# 读入需要配准的两张图像
img1 = cv2.imread('image1.jpg')
img2 = cv2.imread('image2.jpg')
# 将图像转换为灰度图像
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
# 使用 Shi-Tomasi 算法寻找关键点并计算特征描述子
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(gray1, None)
kp2, des2 = sift.detectAndCompute(gray2, None)
# 使用 FLANN 匹配器进行特征匹配
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)
# 选择好的匹配点
good = []
for m, n in matches:
if m.distance < 0.7 * n.distance:
good.append(m)
# 获取匹配点对应的坐标
src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
# 使用 RANSAC 算法进行配准
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
# 对第一张图像进行变换并输出结果
result = cv2.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0]))
# 将第二张图像拼接到全景图中
result[0:img2.shape[0], img1.shape[1]:img1.shape[1] + img2.shape[1]] = img2
# 输出全景图
cv2.imshow('result', result)
cv2.waitKey(0)
cv2.destroyAllWindows()
阅读全文