kernel kmeans 实现单木分割的python代码
时间: 2023-04-01 19:00:44 浏览: 291
大数据的作业 基于python实现kmeans 是对球队强弱进行聚类+源代码+文档说明+数据
5星 · 资源好评率100%
以下是 kernel kmeans 实现单木分割的 Python 代码:
```python
import numpy as np
def kernel_kmeans(X, k, kernel_func, max_iter=100):
n_samples = X.shape[]
# Initialize cluster centers randomly
centers = X[np.random.choice(n_samples, k, replace=False)]
# Initialize cluster assignments
labels = np.zeros(n_samples)
# Initialize kernel matrix
K = kernel_func(X, X)
# Iterate until convergence or max iterations reached
for i in range(max_iter):
# Assign each sample to the closest cluster center
for j in range(n_samples):
distances = [np.linalg.norm(K[j] - K[c]) for c in centers]
labels[j] = np.argmin(distances)
# Update cluster centers
for c in range(k):
mask = (labels == c)
if np.sum(mask) > :
centers[c] = np.mean(X[mask], axis=)
# Update kernel matrix
K = kernel_func(X, X)
return labels, centers
def single_linkage(X, k, kernel_func, max_iter=100):
n_samples = X.shape[]
# Initialize cluster assignments
labels = np.zeros(n_samples)
# Initialize kernel matrix
K = kernel_func(X, X)
# Iterate until k clusters remain or max iterations reached
for i in range(n_samples - k):
# Find the two closest clusters
min_distance = np.inf
for j in range(n_samples):
for c in range(k):
if labels[j] == c:
distance = np.min([np.linalg.norm(K[j] - K[j2]) for j2 in range(n_samples) if labels[j2] != c])
if distance < min_distance:
min_distance = distance
merge_idx = j
merge_label = c
# Merge the two closest clusters
labels[labels == merge_label] = k + i
labels[merge_idx] = k + i
# Run kernel k-means on the final clustering
final_labels, final_centers = kernel_kmeans(X, k, kernel_func, max_iter)
return final_labels, final_centers
```
希望这个代码能够帮到你!
阅读全文