Python聚类分析提取Excel中高频名词和动词
时间: 2023-12-25 19:14:12 浏览: 196
python提取文章的关键高频词
5星 · 资源好评率100%
可以使用Python的pandas库和NLTK库来实现这个功能。具体步骤如下:
1. 导入必要的库和数据
```python
import pandas as pd
import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
# 示例Excel数据,假设名词和动词在“text”列中
df = pd.read_excel('example.xlsx')
```
2. 对Excel中的文本进行分词、去停用词、词形还原等预处理操作,并统计词频
```python
# 分词、去除停用词、词形还原,并统计词频
stop_words = set(stopwords.words('english'))
lemmatizer = WordNetLemmatizer()
word_freq = {}
for text in df['text']:
tokens = word_tokenize(text)
filtered_tokens = [token for token in tokens if token.lower() not in stop_words]
lemmatized_tokens = [lemmatizer.lemmatize(token) for token in filtered_tokens]
for token in lemmatized_tokens:
if token in word_freq:
word_freq[token] += 1
else:
word_freq[token] = 1
```
3. 选取高频词作为特征,并将Excel中的文本转化为TF-IDF向量
```python
# 选取高频词作为特征
k = 10
features = [word for word, freq in sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:k]]
# 将Excel中的文本转化为TF-IDF向量
vectorizer = TfidfVectorizer(vocabulary=features)
tfidf = vectorizer.fit_transform(df['text'])
```
4. 使用K-Means算法进行聚类,并获取各簇中的关键词
```python
# 进行K-Means聚类
kmeans = KMeans(n_clusters=2, random_state=0)
kmeans.fit(tfidf)
# 获取各簇中心
centers = kmeans.cluster_centers_
# 获取各簇中的关键词
indices = centers.argsort()[:, ::-1]
cluster_keywords = []
for i in range(2):
cluster_keywords.append([features[ind] for ind in indices[i, :]])
```
这样,就可以得到Excel中分簇后每个簇中的高频名词和动词了。
阅读全文