yolov3tiny空洞卷积代码
时间: 2023-10-10 12:15:56 浏览: 96
yolov3源代码
4星 · 用户满意度95%
以下是 YOLOv3 Tiny 中使用空洞卷积的代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1):
super(ConvBlock, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation)
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class YOLOv3Tiny(nn.Module):
def __init__(self, num_classes):
super(YOLOv3Tiny, self).__init__()
self.num_classes = num_classes
self.conv1 = ConvBlock(3, 16, 3, 1, 1)
self.pool1 = nn.MaxPool2d(2, 2)
self.conv2 = ConvBlock(16, 32, 3, 1, 1)
self.pool2 = nn.MaxPool2d(2, 2)
self.conv3 = ConvBlock(32, 64, 3, 1, 1)
self.pool3 = nn.MaxPool2d(2, 2)
self.conv4 = ConvBlock(64, 128, 3, 1, 1)
self.pool4 = nn.MaxPool2d(2, 2)
self.conv5 = ConvBlock(128, 256, 3, 1, 1)
self.pool5 = nn.MaxPool2d(2, 2)
self.conv6 = ConvBlock(256, 512, 3, 1, 1, dilation=2)
self.conv7 = ConvBlock(512, 1024, 3, 1, 1, dilation=2)
self.conv8 = nn.Conv2d(1024, 256, 1, 1)
self.conv9 = nn.Conv2d(256, 512, 3, 1, 1)
self.conv10 = nn.Conv2d(512, self.num_classes, 1, 1)
def forward(self, x):
x = self.conv1(x)
x = self.pool1(x)
x = self.conv2(x)
x = self.pool2(x)
x = self.conv3(x)
x = self.pool3(x)
x = self.conv4(x)
x = self.pool4(x)
x = self.conv5(x)
x = self.pool5(x)
x = self.conv6(x)
x = self.conv7(x)
x = self.conv8(x)
x = F.interpolate(x, scale_factor=4, mode='nearest')
x = self.conv9(x)
x = self.conv10(x)
return x
```
这是一个简化的 YOLOv3 Tiny 模型,其中使用了空洞卷积(dilated convolution)来增加感受野。模型定义了几个卷积块(ConvBlock),每个块包含了卷积、批归一化和 ReLU 激活函数。模型的前向传播中依次通过这些卷积块,并最终输出预测结果。
请注意,这只是一个简化的示例代码,实际的 YOLOv3 Tiny 模型可能包含更多层和特定的结构。此外,这里的代码只展示了模型的定义部分,还需要根据具体任务来编写训练和推理的代码。
阅读全文