GraphModule( (conv1): QuantizedConvReLU2d(1, 16, kernel_size=(7, 7), stride=(2, 1), scale=1.0, zero_point=0)在量化中卷积核的padding参数可以为3吗

时间: 2023-11-02 20:07:15 浏览: 29
在 PyTorch 的量化中,卷积核的 padding 参数在一些情况下可以为 3,但是这取决于输入张量的形状和卷积核的大小。如果使用的是 PyTorch 自带的量化卷积层,可以通过设置 padding_mode 参数为 "circular" 来使用 padding=3,例如: ``` conv = nn.quantized.QuantizedConv2d(in_channels=1, out_channels=16, kernel_size=(7, 7), stride=(2, 1), padding=3, padding_mode="circular", scale=1.0, zero_point=0) ``` 但是需要注意的是,padding_mode 为 "circular" 时,输入张量的大小必须是卷积核大小的整数倍。否则,可以尝试调整卷积核大小或步长来实现需要的 padding 效果。
相关问题

GraphModule( (conv1): QuantizedConvReLU2d(1, 16, kernel_size=(7, 7), stride=(2, 1), scale=1.0, zero_point=0)

这是一个使用量化(quantization)技术的卷积神经网络模块(GraphModule),包含一个卷积层(conv1),输入通道数为1,输出通道数为16,卷积核大小为7x7,步长为(2,1),量化参数为scale=1.0,零点为zero_point=0。量化是一种将浮点数表示的神经网络参数和激活值转换为整数表示的技术,可以显著减小神经网络的模型大小,提高推理速度和节省功耗。

根据提示,补充代码,构建出满足打印输出要求结当实例化结果打印时结构如下,即为通过测试: LeNet( (conv): Sequential( (0): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1)) (1): Sigmoid() (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (3): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1)) (4): Sigmoid() (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) ) (fc): Sequential( (0): Linear(in_features=256, out_features=120, bias=True) (1): Sigmoid() (2): Linear(in_features=120, out_features=84, bias=True) (3): Sigmoid() (4): Linear(in_features=84, out_features=10, bias=True) ) )构的 LeNet 模型。

可以使用以下代码构建 LeNet 模型: ```python import torch.nn as nn class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5), nn.Sigmoid(), nn.MaxPool2d(kernel_size=2), nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5), nn.Sigmoid(), nn.MaxPool2d(kernel_size=2) ) self.fc = nn.Sequential( nn.Linear(in_features=256, out_features=120), nn.Sigmoid(), nn.Linear(in_features=120, out_features=84), nn.Sigmoid(), nn.Linear(in_features=84, out_features=10) ) def forward(self, x): x = self.conv(x) x = x.view(x.size(0), -1) x = self.fc(x) return x lenet = LeNet() print(lenet) ```

相关推荐

基于300条数据用CNN多分类预测时,训练精度特别差,代码如下class Model(Module): def __init__(self): super(Model, self).__init__() self.conv1_1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(3,3),padding=1) self.bn1_1 = nn.BatchNorm2d(64) self.relu1_1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=4, stride=4) self.conv2_1 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(3,3),padding=1) self.bn2_1 = nn.BatchNorm2d(128) self.relu2_1 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3_1 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=(3,3),padding=1) self.bn3_1 = nn.BatchNorm2d(256) self.relu3_1 = nn.ReLU() self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv4_1 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=(3,3)) self.bn4_1 = nn.BatchNorm2d(512) self.relu4_1 = nn.ReLU() self.conv4_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn4_2 = nn.BatchNorm2d(512) self.relu4_2 = nn.ReLU() self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_1 = nn.BatchNorm2d(512) self.relu5_1 = nn.ReLU() self.conv5_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_2 = nn.BatchNorm2d(512) self.relu5_2 = nn.ReLU() self.pool5 = nn.AdaptiveAvgPool2d(5) self.dropout1 = nn.Dropout(p=0.3) self.fc1=nn.Linear(512*5*5,512) self.relu6=nn.ReLU() self.dropout2 = nn.Dropout(p=0.2) self.fc2=nn.Linear(512,141) ,具体如何修改代码

描述这段代码 class VGGTest(nn.Module): def __init__(self, pretrained=True, numClasses=10): super(VGGTest, self).__init__() # conv1 1/2 self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, padding=1) self.relu1_1 = nn.ReLU(inplace=True) self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, padding=1) self.relu1_2 = nn.ReLU(inplace=True) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) # conv2 1/4 self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.relu2_1 = nn.ReLU(inplace=True) self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, padding=1) self.relu2_2 = nn.ReLU(inplace=True) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) # conv3 1/8 self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, padding=1) self.relu3_1 = nn.ReLU(inplace=True) self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.relu3_2 = nn.ReLU(inplace=True) self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.relu3_3 = nn.ReLU(inplace=True) self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) # conv4 1/16 self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, padding=1) self.relu4_1 = nn.ReLU(inplace=True) self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.relu4_2 = nn.ReLU(inplace=True) self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.relu4_3 = nn.ReLU(inplace=True) self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) # conv5 1/32 self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.relu5_1 = nn.ReLU(inplace=True) self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.relu5_2 = nn.ReLU(inplace=True) self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.relu5_3 = nn.ReLU(inplace=True) self.pool5 = nn.MaxPool2d(kernel_size=2, stride=2)

如何将self.conv1 = nn.Conv2d(4 * num_filters, num_filters, kernel_size=3, padding=1) self.conv_offset1 = nn.Conv2d(512, 18, kernel_size=3, stride=1, padding=1) init_offset1 = torch.Tensor(np.zeros([18, 512, 3, 3])) self.conv_offset1.weight = torch.nn.Parameter(init_offset1) # 初始化为0 self.conv_mask1 = nn.Conv2d(512, 9, kernel_size=3, stride=1, padding=1) init_mask1 = torch.Tensor(np.zeros([9, 512, 3, 3]) + np.array([0.5])) self.conv_mask1.weight = torch.nn.Parameter(init_mask1) # 初始化为0.5 与torchvision.ops.deform_conv2d,加入到:class NLayerDiscriminator(nn.Module): def init(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).init() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d kw = 4 padw = int(np.ceil((kw-1)/2)) sequence = [ nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True) ] nf_mult = 1 for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2n_layers, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] if use_sigmoid: sequence += [nn.Sigmoid()] self.model = nn.Sequential(*sequence) def forward(self, input): return self.model(input)中,请给出修改后的代码

最新推荐

recommend-type

基于SpringBoot框架仿stackOverflow网站后台开发.zip

基于springboot的java毕业&课程设计
recommend-type

基于SpringBoot洗衣店管理系统.zip

基于springboot的java毕业&课程设计
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SQL怎么实现 数据透视表

SQL可以通过使用聚合函数和GROUP BY子句来实现数据透视表。 例如,假设有一个销售记录表,其中包含产品名称、销售日期、销售数量和销售额等信息。要创建一个按照产品名称、销售日期和销售额进行汇总的数据透视表,可以使用以下SQL语句: ``` SELECT ProductName, SaleDate, SUM(SaleQuantity) AS TotalQuantity, SUM(SaleAmount) AS TotalAmount FROM Sales GROUP BY ProductName, SaleDate; ``` 该语句将Sales表按照ProductName和SaleDat
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

使用vue3+elementsplus封装一个提示确认框的组件,要求将请求地址和确认框展示信息作为参数暴露出去

好的,下面是使用 Vue3 和 ElementPlus 封装一个提示确认框的组件,同时将请求地址和确认框展示信息作为参数暴露出去。 ```vue <template> <el-dialog title="确认提示" :visible.sync="dialogVisible" width="30%" :before-close="handleClose" > <p>{{ message }}</p> <span slot="footer" class="dialog-footer"> <el-button @click="di