self.conv1 = paddle.nn.Conv2D(in_channels=1,out_channels=6,kernel_size=5,stride=1,padding='SAME') self.conv2 = paddle.nn.Conv2D(in_channels=6,out_channels=16,kernel_size=5,stride=1) self.conv3 = paddle.nn.Conv2D(in_channels=16,out_channels=120,kernel_size=5,stride=1)
时间: 2024-02-22 17:01:34 浏览: 166
这段代码看起来像是使用 PaddlePaddle 深度学习框架定义了一个卷积神经网络模型,其中包含了 3 个卷积层。第一个卷积层输入通道数为 1,输出通道数为 6,卷积核大小为 5x5,步长为 1,padding 为 SAME;第二个卷积层输入通道数为 6,输出通道数为 16,卷积核大小为 5x5,步长为 1,padding 为默认值(即不填);第三个卷积层输入通道数为 16,输出通道数为 120,卷积核大小为 5x5,步长为 1,padding 为默认值。这是一个经典的 LeNet-5 模型结构,用于图像分类等任务。
相关问题
class LeNet5(paddle.nn.Layer): def __init__(self): super(LeNet5, self).__init__() self.conv1=paddle.nn.Conv2D(in_channels=1,out_channel=6,kernel_size=5) self.avgpool1=paddle.nn.AvPool2D(kernel_size=2,stride=2) self.conv2=paddle.nn.Conv2D(in_channels=6,out_channels=16,kernel_size=5) self.avgpool2=paddle.nn.AvPool2D(kernel_size=2,stride=2) self.flatten=paddle.nn.Flatten() self.fc1 = paddle.nn.Linear(in_features=400,out_features=120) self.fc2 = paddle.nn.Linear(in_features=120,out_features=84) self.fc3 = paddle.nn.Linear(in_features=84, out_features=10)在pytorch中如何表示
在 PyTorch 中,可以使用以下代码表示该 LeNet5 模型:
```
import torch.nn as nn
class LeNet5(nn.Module):
def __init__(self):
super(LeNet5, self).__init__()
self.conv1=nn.Conv2d(in_channels=1,out_channels=6,kernel_size=5)
self.avgpool1=nn.AvgPool2d(kernel_size=2,stride=2)
self.conv2=nn.Conv2d(in_channels=6,out_channels=16,kernel_size=5)
self.avgpool2=nn.AvgPool2d(kernel_size=2,stride=2)
self.flatten=nn.Flatten()
self.fc1 = nn.Linear(in_features=400,out_features=120)
self.fc2 = nn.Linear(in_features=120,out_features=84)
self.fc3 = nn.Linear(in_features=84, out_features=10)
```
其中,需要引入 `torch.nn` 模块,将 `nn.Conv2d`、`nn.AvgPool2d`、`nn.Flatten`、`nn.Linear` 替换掉原来的 `paddle.nn`。
#池化层,按最大池化 kernel_size池化大小 stride步长 padding边界填充 self.max_pool1 = paddle.nn.MaxPool2D(kernel_size=2, stride=2) self.max_pool2 = paddle.nn.MaxPool2D(kernel_size=2, stride=2) #卷积层 in_channels输入通道 out_channels输出通道(及创建的这层神经元的格式),kernel_size卷积核大小,padding边界填充 #请注意保持上层out_channels和in_channels的一致性 self.conv1 = paddle.nn.Conv2D(in_channels=1,out_channels=6,kernel_size=5,stride=1,padding='SAME') self.conv2 = paddle.nn.Conv2D(in_channels=6,out_channels=16,kernel_size=5,stride=1) self.conv3 = paddle.nn.Conv2D(in_channels=16,out_channels=120,kernel_size=5,stride=1) #全连接层 输入是尺寸大小,输出尺寸大小(及神经元个数),在输入前用 paddle.flatten对上一层展开 self.fc1=paddle.nn.Linear(120,84) self.fc2=paddle.nn.Linear(84,10)
这段代码是一个 LeNet 模型的实现,其中包括了两个最大池化层和三个卷积层以及两个全连接层。具体解释如下:
1. 第一个最大池化层:使用 2×2 的池化核,步长为 2,对输入的特征图进行下采样,减小特征图的尺寸。
2. 第二个最大池化层:同样使用 2×2 的池化核,步长为 2,对输入的特征图进行下采样。
3. 第一个卷积层:输入通道数为 1,输出通道数为 6,卷积核大小为 5×5,填充方式为 SAME,使用 ReLU 激活函数。
4. 第二个卷积层:输入通道数为 6,输出通道数为 16,卷积核大小为 5×5,填充方式为默认的 VALID,使用 ReLU 激活函数。
5. 第三个卷积层:输入通道数为 16,输出通道数为 120,卷积核大小为 5×5,填充方式为默认的 VALID,使用 ReLU 激活函数。
6. 第一个全连接层:输入大小为 120,输出大小为 84,使用 ReLU 激活函数。
7. 第二个全连接层:输入大小为 84,输出大小为 10,没有使用激活函数。
需要注意的是,在卷积层和全连接层之间,需要使用 paddle.flatten() 来对上一层的输出特征图或张量进行展开,以便作为下一层的输入。
阅读全文
相关推荐
















