编写一维时序卷积残差网络代码中适用于keras
时间: 2024-05-14 17:18:28 浏览: 98
AdaBN代码基于Keras和Tensorflow以及一维卷积神经网络
5星 · 资源好评率100%
以下是一个基于Keras的一维时序卷积残差网络代码示例:
```python
from keras.layers import Input, Conv1D, BatchNormalization, Activation, Add, MaxPooling1D, Flatten, Dense
from keras.models import Model
def resnet_block(inputs, filters, kernel_size, padding='same', strides=1):
# First Conv1D layer
x = Conv1D(filters=filters, kernel_size=kernel_size, padding=padding, strides=strides)(inputs)
x = BatchNormalization()(x)
x = Activation('relu')(x)
# Second Conv1D layer
x = Conv1D(filters=filters, kernel_size=kernel_size, padding=padding, strides=strides)(x)
x = BatchNormalization()(x)
# Shortcut connection
shortcut = inputs
if strides != 1 or filters != shortcut.shape[-1]:
shortcut = Conv1D(filters=filters, kernel_size=1, padding=padding, strides=strides)(shortcut)
shortcut = BatchNormalization()(shortcut)
# Add shortcut and residual
x = Add()([x, shortcut])
x = Activation('relu')(x)
return x
def resnet(input_shape, num_classes):
inputs = Input(shape=input_shape)
# Initial Conv1D layer
x = Conv1D(filters=64, kernel_size=7, padding='same', strides=2)(inputs)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling1D(pool_size=3, strides=2, padding='same')(x)
# ResNet blocks
x = resnet_block(x, filters=64, kernel_size=3, padding='same', strides=1)
x = resnet_block(x, filters=64, kernel_size=3, padding='same', strides=1)
x = resnet_block(x, filters=128, kernel_size=3, padding='same', strides=2)
x = resnet_block(x, filters=128, kernel_size=3, padding='same', strides=1)
x = resnet_block(x, filters=256, kernel_size=3, padding='same', strides=2)
x = resnet_block(x, filters=256, kernel_size=3, padding='same', strides=1)
# Average pooling and output layers
x = Flatten()(x)
x = Dense(num_classes, activation='softmax')(x)
model = Model(inputs=inputs, outputs=x)
return model
```
在此示例中,我们定义了一个包含6个残差块的一维时序卷积残差网络。每个残差块包含两个卷积层和一个快捷连接,通过调用`resnet_block`函数来实现。在模型定义的最后,我们使用`Flatten`层将输出展平,并使用一个具有softmax激活函数的全连接层作为输出层。
阅读全文