构建一维时序卷积残差网络模型代码并进行训练保存适用于keras包括膨胀卷积和因果卷积
时间: 2024-03-30 22:14:59 浏览: 64
下面是一个简单的一维时序卷积残差网络模型的代码,包含膨胀卷积和因果卷积:
```
from keras.layers import Input, Conv1D, Add, Activation, Dropout
from keras.models import Model
from keras.utils import plot_model
def residual_block(x, filters, kernel_size, dilation_rate):
res = x
x = Conv1D(filters=filters, kernel_size=kernel_size, padding='causal', dilation_rate=dilation_rate)(x)
x = Activation('relu')(x)
x = Dropout(0.5)(x)
x = Conv1D(filters=filters, kernel_size=kernel_size, padding='causal', dilation_rate=dilation_rate)(x)
x = Add()([res, x])
return x
input_shape = (100, 1)
inputs = Input(shape=input_shape)
x = Conv1D(filters=64, kernel_size=3, padding='causal')(inputs)
x = Activation('relu')(x)
x = Dropout(0.5)(x)
x = residual_block(x, filters=64, kernel_size=3, dilation_rate=1)
x = residual_block(x, filters=64, kernel_size=3, dilation_rate=2)
x = residual_block(x, filters=64, kernel_size=3, dilation_rate=4)
x = residual_block(x, filters=64, kernel_size=3, dilation_rate=8)
x = residual_block(x, filters=64, kernel_size=3, dilation_rate=16)
x = Conv1D(filters=1, kernel_size=1, activation='linear')(x)
model = Model(inputs=inputs, outputs=x)
model.compile(optimizer='adam', loss='mse')
model.summary()
plot_model(model, to_file='residual_block.png', show_shapes=True)
# 训练模型并保存
model.fit(x_train, y_train, epochs=100, batch_size=64, validation_data=(x_val, y_val))
model.save('residual_block.h5')
```
该模型使用了一维时序卷积(`Conv1D`)和残差块(`residual_block`),其中每个残差块由两个卷积层和一个跳跃连接组成。使用不同的膨胀率(`dilation_rate`)可以获得不同的感受野。最后使用一个大小为1的卷积层将输出转换为目标形状。
在训练过程中,我们使用均方误差损失函数和Adam优化器。训练完成后,我们可以将模型保存为.h5文件,以备后续使用。
阅读全文