残差块的卷积神经网络的python代码
时间: 2023-10-15 17:06:01 浏览: 185
以下是一个使用残差块的卷积神经网络的Python代码示例:
```python
import tensorflow as tf
def residual_block(x, filters, kernel_size, dilation_rate=1, dropout_rate=0.0):
# Convolutional layer 1
x_skip = x
x = tf.keras.layers.Conv1D(filters, kernel_size, padding='same', dilation_rate=dilation_rate)(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.Dropout(dropout_rate)(x)
# Convolutional layer 2
x = tf.keras.layers.Conv1D(filters, kernel_size, padding='same', dilation_rate=dilation_rate)(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.Dropout(dropout_rate)(x)
# Skip connection
if x_skip.shape[-1] != x.shape[-1]:
x_skip = tf.keras.layers.Conv1D(filters, kernel_size=1, padding='same')(x_skip)
x = tf.keras.layers.Add()([x, x_skip])
x = tf.keras.layers.Activation('relu')(x)
return x
def build_model(input_shape, num_classes):
inputs = tf.keras.layers.Input(shape=input_shape)
# Residual blocks
x = residual_block(inputs, filters=32, kernel_size=3)
x = residual_block(x, filters=32, kernel_size=3)
x = residual_block(x, filters=64, kernel_size=3, dilation_rate=2)
x = residual_block(x, filters=64, kernel_size=3, dilation_rate=2)
x = residual_block(x, filters=128, kernel_size=3, dilation_rate=4)
x = residual_block(x, filters=128, kernel_size=3, dilation_rate=4)
# Global average pooling and output
x = tf.keras.layers.GlobalAveragePooling1D()(x)
outputs = tf.keras.layers.Dense(num_classes, activation='softmax')(x)
model = tf.keras.models.Model(inputs=inputs, outputs=outputs)
return model
```
这个例子中使用了一维卷积层,但是使用二维卷积层也是类似的。在这个例子中,我们定义了一个残差块函数`residual_block()`,并在模型中使用了多个这样的块。模型的输出是全局平均池化层和一个全连接层,用于分类。这个模型可以接受输入形状为`(batch_size, input_length, input_dim)`的张量,并输出形状为`(batch_size, num_classes)`的张量。
阅读全文