残差卷积神经网络python
时间: 2023-08-10 12:06:33 浏览: 123
残差卷积神经网络(Residual Convolutional Neural Network)是一种深度学习模型,它在卷积神经网络的基础上引入了残差连接(Residual Connection)的概念。它的目标是解决深层网络训练中的梯度消失和梯度爆炸问题。
以下是一个用Python实现的残差卷积神经网络的示例代码:
```python
import tensorflow as tf
def residual_block(inputs, filters, kernel_size):
x = tf.keras.layers.Conv2D(filters, kernel_size, activation='relu', padding='same')(inputs)
x = tf.keras.layers.Conv2D(filters, kernel_size, activation='relu', padding='same')(x)
x = tf.keras.layers.add([inputs, x])
return tf.keras.layers.Activation('relu')(x)
def build_resnet(input_shape, num_classes):
inputs = tf.keras.Input(shape=input_shape)
x = tf.keras.layers.Conv2D(64, 7, activation='relu', padding='same')(inputs)
x = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(x)
x = residual_block(x, 64, 3)
x = residual_block(x, 64, 3)
x = residual_block(x, 64, 3)
x = tf.keras.layers.GlobalAveragePooling2D()(x)
x = tf.keras.layers.Dense(num_classes, activation='softmax')(x)
model = tf.keras.Model(inputs=inputs, outputs=x)
return model
# 使用示例
input_shape = (32, 32, 3)
num_classes = 10
model = build_resnet(input_shape, num_classes)
model.summary()
```
以上代码实现了一个简单的残差卷积神经网络模型,包括了一个残差块(residual block)和一个完整的模型构建函数(build_resnet)。你可以根据自己的需求对模型进行修改和扩展。
阅读全文