python create float array
时间: 2023-09-06 11:14:18 浏览: 151
你可以使用Python中的numpy库来创建一个浮点类型的数组。以下是一个示例代码:
```python
import numpy as np
# 创建一个 1x5 的浮点类型数组
arr = np.array([1.2, 3.4, 5.6, 7.8, 9.0], dtype=float)
# 打印数组
print(arr)
```
输出结果:
```
[1.2 3.4 5.6 7.8 9. ]
```
在上面的代码中,我们使用numpy库中的array函数创建了一个包含5个浮点类型数值的数组,并将其赋值给变量arr。我们还可以通过指定dtype参数来指定数组的数据类型,这里我们指定为float类型。
相关问题
python float(x) for x in char_array
As an AI language model, I am not sure what you are trying to achieve with the code snippet you have provided. However, I can explain what the code does.
The code snippet you have provided is not a valid Python statement. It seems that you are trying to apply the `float()` function to each element in a character array (`char_array`) using a loop, but the loop itself is missing.
Assuming you have a valid loop that iterates through each element in `char_array`, the `float()` function converts each element to a floating-point number. If an element cannot be converted to a number, a `ValueError` exception is raised.
Here is an example of how the code might look like with a loop:
```python
char_array = ['3.14', '2.718', 'foo', '4.2']
float_array = []
for x in char_array:
try:
float_x = float(x)
float_array.append(float_x)
except ValueError:
print(f"{x} is not a valid number")
print(float_array)
```
Output:
```
foo is not a valid number
[3.14, 2.718, 4.2]
```
In this example, we have a `char_array` that contains four elements: `'3.14'`, `'2.718'`, `'foo'`, and `'4.2'`. We create an empty list called `float_array` to store the converted numbers.
We then loop through each element in `char_array` and try to convert it to a float using the `float()` function. If the conversion is successful, we append the float value to `float_array`. If the conversion fails, we print a message to the console.
Finally, we print out the contents of `float_array`, which contains only the valid floating-point numbers from `char_array`.
python rnn股票
您好!关于使用RNN预测股票价格,可以使用Keras或TensorFlow等深度学习框架来实现。一般来说,需要先对数据进行预处理,如归一化、平滑等,然后将数据分为训练集和测试集,构建RNN模型并进行训练,最后使用测试集进行验证和预测。
以下是一个简单的Python代码示例:
```python
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense, LSTM
# 读取数据
data = pd.read_csv('stock_data.csv')
# 数据预处理
data = data.dropna()
data = data[['Close']]
data = data.values
data = data.astype('float32')
data /= np.max(data)
# 划分训练集和测试集
train_size = int(len(data) * 0.7)
test_size = len(data) - train_size
train_data, test_data = data[0:train_size,:], data[train_size:len(data),:]
# 构建数据集
def create_dataset(dataset, look_back=1):
X, Y = [], []
for i in range(len(dataset)-look_back-1):
a = dataset[i:(i+look_back), 0]
X.append(a)
Y.append(dataset[i + look_back, 0])
return np.array(X), np.array(Y)
look_back = 3
train_X, train_Y = create_dataset(train_data, look_back)
test_X, test_Y = create_dataset(test_data, look_back)
# 构建RNN模型
model = Sequential()
model.add(LSTM(4, input_shape=(1, look_back)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(train_X, train_Y, epochs=100, batch_size=1, verbose=2)
# 预测
train_predict = model.predict(train_X)
test_predict = model.predict(test_X)
# 反归一化
train_predict = train_predict * np.max(data)
train_Y = train_Y * np.max(data)
test_predict = test_predict * np.max(data)
test_Y = test_Y * np.max(data)
# 输出结果
train_score = model.evaluate(train_X, train_Y, verbose=0)
test_score = model.evaluate(test_X, test_Y, verbose=0)
print('Train Score: %.2f MSE (%.2f RMSE)' % (train_score, np.sqrt(train_score)))
print('Test Score: %.2f MSE (%.2f RMSE)' % (test_score, np.sqrt(test_score)))
# 相关问题:
阅读全文