vrp代码
时间: 2023-07-02 14:09:36 浏览: 189
VRP(Vehicle Routing Problem)是指在一定的条件下,规划运输车辆的路线和装载量,使得所有的运输需求能够得到满足,并且使得总的运输成本最小化。
以下是一个Python的VRP求解代码示例:
```python
import numpy as np
from scipy.spatial.distance import pdist, squareform
from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp
# 定义问题类
class VRP:
def __init__(self, num_vehicles, depot, customers):
self.num_vehicles = num_vehicles # 车辆数目
self.depot = depot # 起点
self.customers = customers # 客户列表
# 计算距离矩阵
self.dist_matrix = squareform(pdist(np.concatenate((self.depot, self.customers), axis=0)))
# 创建路线规划求解器
self.manager = pywrapcp.RoutingIndexManager(len(self.dist_matrix), self.num_vehicles, self.depot)
self.routing = pywrapcp.RoutingModel(self.manager)
# 设置距离回调函数
self.def_distance_callback()
# 定义距离回调函数
def def_distance_callback(self):
def distance_callback(from_index, to_index):
from_node = self.manager.IndexToNode(from_index)
to_node = self.manager.IndexToNode(to_index)
return self.dist_matrix[from_node][to_node]
self.routing.SetArcCostEvaluatorOfAllVehicles(distance_callback)
# 求解VRP
def solve(self, time_limit=10000):
# 设置求解参数
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.local_search_metaheuristic = routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH
search_parameters.time_limit.seconds = time_limit
# 求解VRP
assignment = self.routing.SolveWithParameters(search_parameters)
# 输出结果
if assignment:
print('Total distance of all routes: {} meters'.format(assignment.ObjectiveValue()))
for vehicle_id in range(self.num_vehicles):
index = self.routing.Start(vehicle_id)
plan_output = 'Route for vehicle {}:\n'.format(vehicle_id)
route_distance = 0
while not self.routing.IsEnd(index):
node_index = self.manager.IndexToNode(index)
plan_output += ' {} -> '.format(node_index)
previous_index = index
index = assignment.Value(self.routing.NextVar(index))
route_distance += self.routing.GetArcCostForVehicle(previous_index, index, vehicle_id)
node_index = self.manager.IndexToNode(index)
plan_output += ' {}\n'.format(node_index)
plan_output += 'Distance of the route: {} meters\n'.format(route_distance)
print(plan_output)
else:
print('No solution found.')
```
使用示例:
```python
# 定义客户数据
num_customers = 5
depot = [(0, 0)]
customers = np.random.rand(num_customers, 2) * 10
# 定义VRP问题
vrp = VRP(num_vehicles=2, depot=depot, customers=customers)
# 求解VRP
vrp.solve()
```
这个示例代码使用了Google OR-Tools库中的路线规划求解器,它可以自动求解VRP问题,并给出最优解。
阅读全文