python多层感知机的从零开始实现
时间: 2024-04-05 07:24:52 浏览: 92
多层感知器:Google Colab中的Python从零开始开发的多层感知器。 使用的库:numpy,matplotlib,sklearn
多层感知机的从零开始实现可以通过以下步骤进行:
1. 导入所需的库和模块:
```python
import torch
from torch import nn
```
2. 定义模型类:
```python
class MLP(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(MLP, self).__init__()
self.hidden = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.output = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = self.hidden(x)
x = self.relu(x)
x = self.output(x)
return x
```
3. 初始化模型参数:
```python
input_size = 784
hidden_size = 256
output_size = 10
model = MLP(input_size, hidden_size, output_size)
```
4. 定义损失函数和优化器:
```python
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
```
5. 训练模型:
```python
num_epochs = 10
for epoch in range(num_epochs):
for inputs, labels in train_iter:
# 前向传播
outputs = model(inputs)
loss = loss_fn(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
6. 在测试集上评估模型:
```python
with torch.no_grad():
correct = 0
total = 0
for inputs, labels in test_iter:
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = correct / total
print('Test Accuracy: {:.2f}%'.format(accuracy * 100))
```
阅读全文