解释predict_multiple( inp_dir="data/train/image/", out_dir="predictions/", checkpoints_path="tmp/vgg_unet_1")
时间: 2024-05-20 07:15:10 浏览: 133
这是一个函数,其作用是对输入目录中的多个图像进行预测,并将预测结果保存到输出目录中。具体参数说明如下:
- inp_dir: 输入目录,包含待预测的图像文件。默认值为"data/train/image/",即训练数据集中的图像目录。
- out_dir: 输出目录,包含保存预测结果的图像文件。默认值为"predictions/"。
- checkpoints_path: 模型检查点的路径,用于加载训练好的模型进行预测。默认值为"tmp/vgg_unet_1"。
该函数的实现方式取决于具体的深度学习框架和模型实现,这里无法提供更多的细节。
相关问题
from keras import applications from keras.preprocessing.image import ImageDataGenerator from keras import optimizers from keras.models import Sequential, Model from keras.layers import Dropout, Flatten, Dense img_width, img_height = 256, 256 batch_size = 16 epochs = 50 train_data_dir = 'C:/Users/Z-/Desktop/kaggle/train' validation_data_dir = 'C:/Users/Z-/Desktop/kaggle/test1' OUT_CATAGORIES = 1 nb_train_samples = 2000 nb_validation_samples = 100 base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(img_width, img_height, 3)) base_model.summary() for layer in base_model.layers[:15]: layer.trainable = False top_model = Sequential() top_model.add(Flatten(input_shape=base_model.output_shape[1:])) top_model.add(Dense(256, activation='relu')) top_model.add(Dropout(0.5)) top_model.add(Dense(OUT_CATAGORIES, activation='sigmoid')) model = Model(inputs=base_model.input, outputs=top_model(base_model.output)) model.compile(loss='binary_crossentropy', optimizer=optimizers.SGD(learning_rate=0.0001, momentum=0.9), metrics=['accuracy']) train_datagen = ImageDataGenerator(rescale=1. / 255, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1. / 255) train_generator = train_datagen.flow_from_directory( train_data_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='binary') validation_generator = test_datagen.flow_from_directory( validation_data_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='binary', shuffle=False ) model.fit_generator( train_generator, steps_per_epoch=nb_train_samples / batch_size, epochs=epochs, validation_data=validation_generator, validation_steps=nb_validation_samples / batch_size, verbose=2, workers=12 ) score = model.evaluate_generator(validation_generator, nb_validation_samples / batch_size) scores = model.predict_generator(validation_generator, nb_validation_samples / batch_size)看看这段代码有什么错误
在段代码中,有一些错误和需要注意的地方:
1. `img_width` 和 `img_height` 变量没有被定义,需要先定义它们的值。
2. `OUT_CATAGORIES` 变量也没有被定义,需要给它赋值。
3. 在使用 `train_generator` 和 `validation_generator` 时,`steps_per_epoch` 和 `validation_steps` 应该为整数值,而不是浮点数。可以使用 `//` 运算符来进行整除操作。
4. 在评估模型的性能时,`evaluate_generator` 和 `predict_generator` 方法的参数应该是整数值,而不是浮点数。可以使用 `int()` 函数来将浮点数转换为整数。
下面是修改后的代码:
```python
from keras import applications
from keras.preprocessing.image import ImageDataGenerator
from keras import optimizers
from keras.models import Sequential, Model
from keras.layers import Dropout, Flatten, Dense
img_width, img_height = 256, 256
batch_size = 16
epochs = 50
train_data_dir = 'C:/Users/Z-/Desktop/kaggle/train'
validation_data_dir = 'C:/Users/Z-/Desktop/kaggle/test1'
OUT_CATAGORIES = 1
nb_train_samples = 2000
nb_validation_samples = 100
base_model = applications.VGG16(weights='imagenet',
include_top=False,
input_shape=(img_width, img_height, 3))
base_model.summary()
for layer in base_model.layers[:15]:
layer.trainable = False
top_model = Sequential()
top_model.add(Flatten(input_shape=base_model.output_shape[1:]))
top_model.add(Dense(256, activation='relu'))
top_model.add(Dropout(0.5))
top_model.add(Dense(OUT_CATAGORIES, activation='sigmoid'))
model = Model(inputs=base_model.input,
outputs=top_model(base_model.output))
model.compile(loss='binary_crossentropy',
optimizer=optimizers.SGD(learning_rate=0.0001, momentum=0.9),
metrics=['accuracy'])
train_datagen = ImageDataGenerator(rescale=1. / 255,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary',
shuffle=False)
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size,
verbose=2,
workers=12)
score = model.evaluate_generator(validation_generator, int(nb_validation_samples / batch_size))
scores = model.predict_generator(validation_generator, int(nb_validation_samples / batch_size))
```
ROWS = 150 COLS = 150 # # ROWS = 128 # COLS = 128 CHANNELS = 3 def read_image(file_path): img = cv2.imread(file_path, cv2.IMREAD_COLOR) return cv2.resize(img, (ROWS, COLS), interpolation=cv2.INTER_CUBIC) def predict(): TEST_DIR = 'D:/final/CatVsDog-master/media/img/' result = [] # model = load_model('my_model.h5') model = load_model('D:/final/CatVsDog-master/venv/Include/VGG/model.h5') test_images = [TEST_DIR + i for i in os.listdir(TEST_DIR)] count = len(test_images) # data = np.ndarray((count, CHANNELS, ROWS, COLS), dtype=np.uint8) data = np.ndarray((count, ROWS, COLS, CHANNELS), dtype=np.uint8) # print("图片网维度:") print(data.shape) for i, image_file in enumerate(test_images): image = read_image(image_file) # print() data[i] = image # data[i] = image.T if i % 250 == 0: print('处理 {} of {}'.format(i, count)) test = data predictions = model.predict(test, verbose=0) dict = {} urls = [] for i in test_images: ss = i.split('/') url = '/' + ss[3] + '/' + ss[4] + '/' + ss[5] urls.append(url) for i in range(0, len(predictions)): if predictions[i, 0] >= 0.5: print('I am {:.2%} sure this is a Dog'.format(predictions[i][0])) dict[urls[i]] = "图片预测为:关!" else: print('I am {:.2%} sure this is a Cat'.format(1 - predictions[i][0])) dict[urls[i]] = "图片预测为:开!" plt.imshow(test[i]) # plt.imshow(test[i].T) plt.show() # time.sleep(2) # print(dict) # for key,value in dict.items(): # print(key + ':' + value) return dict if __name__ == '__main__': result = predict() for i in result: print(i)
这段代码是一个使用 VGG 模型进行图片分类的程序。代码中首先定义了图片的尺寸和通道数,然后定义了一个读取图片并进行缩放的函数 read_image。接着定义了一个预测函数 predict,其中加载了之前训练好的 VGG 模型并对测试图片进行预测。最后将预测结果存储在字典中并返回。在主函数中调用了 predict 函数并输出预测结果。
阅读全文