解释代码def train(train_loader, model, optimizer, epoch, best_loss): model.train() loss_record2, loss_record3, loss_record4 = AvgMeter(), AvgMeter(), AvgMeter() accum = 0 for i, pack in enumerate(train_loader, start=1): # ---- data prepare ---- images, gts = pack images = Variable(images).cuda() gts = Variable(gts).cuda() # ---- forward ---- lateral_map_4, lateral_map_3, lateral_map_2 = model(images) # ---- loss function ---- loss4 = structure_loss(lateral_map_4, gts) loss3 = structure_loss(lateral_map_3, gts) loss2 = structure_loss(lateral_map_2, gts) loss = 0.5 * loss2 + 0.3 * loss3 + 0.2 * loss4 # ---- backward ---- loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_norm) optimizer.step() optimizer.zero_grad() # ---- recording loss ---- loss_record2.update(loss2.data, opt.batchsize) loss_record3.update(loss3.data, opt.batchsize) loss_record4.update(loss4.data, opt.batchsize) # ---- train visualization ---- if i % 20 == 0 or i == total_step: print('{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], ' '[lateral-2: {:.4f}, lateral-3: {:0.4f}, lateral-4: {:0.4f}]'. format(datetime.now(), epoch, opt.epoch, i, total_step, loss_record2.show(), loss_record3.show(), loss_record4.show())) print('lr: ', optimizer.param_groups[0]['lr']) save_path = 'snapshots/{}/'.format(opt.train_save) os.makedirs(save_path, exist_ok=True) if (epoch+1) % 1 == 0: meanloss = test(model, opt.test_path) if meanloss < best_loss: print('new best loss: ', meanloss) best_loss = meanloss torch.save(model.state_dict(), save_path + 'TransFuse-%d.pth' % epoch) print('[Saving Snapshot:]', save_path + 'TransFuse-%d.pth'% epoch) return best_loss
时间: 2024-04-28 14:26:10 浏览: 285
keras 自定义loss model.add_loss的使用详解
这段代码是用于训练一个图像分割模型的主函数。首先,将模型设置为训练模式,然后对于每个批次的数据进行循环。从数据包中获取图像和标注,并将它们转换为可变变量并送入GPU中。然后,通过模型进行前向传播,得到三个侧边输出lateral_map_4,lateral_map_3和lateral_map_2。接着,计算三个侧边输出和标注之间的结构损失。将三个损失加权求和得到总损失。使用反向传播计算损失梯度,并使用torch.nn.utils.clip_grad_norm_函数进行梯度裁剪。执行优化器的一步更新,并将梯度清零。记录每个侧边输出的平均损失,以供可视化和输出。如果达到了指定的训练步数或到达了批次的末尾,则输出训练状态。在训练过程中,每个epoch结束后进行模型测试,并保存拥有最小测试损失的模型。函数的返回值是最小测试损失。
阅读全文