解释每一句代码def train(train_loader, model, optimizer, epoch, best_loss): model.train() loss_record2, loss_record3, loss_record4 = AvgMeter(), AvgMeter(), AvgMeter() accum = 0 for i, pack in enumerate(train_loader, start=1): # ---- data prepare ---- images, gts = pack images = Variable(images).cuda() gts = Variable(gts).cuda() # ---- forward ---- lateral_map_4, lateral_map_3, lateral_map_2 = model(images) # ---- loss function ---- loss4 = structure_loss(lateral_map_4, gts) loss3 = structure_loss(lateral_map_3, gts) loss2 = structure_loss(lateral_map_2, gts) loss = 0.5 * loss2 + 0.3 * loss3 + 0.2 * loss4 # ---- backward ---- loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_norm) optimizer.step() optimizer.zero_grad() # ---- recording loss ---- loss_record2.update(loss2.data, opt.batchsize) loss_record3.update(loss3.data, opt.batchsize) loss_record4.update(loss4.data, opt.batchsize) # ---- train visualization ---- if i % 20 == 0 or i == total_step: print('{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], ' '[lateral-2: {:.4f}, lateral-3: {:0.4f}, lateral-4: {:0.4f}]'. format(datetime.now(), epoch, opt.epoch, i, total_step, loss_record2.show(), loss_record3.show(), loss_record4.show()))
时间: 2024-04-29 11:19:41 浏览: 194
PyTorch中model.zero_grad()和optimizer.zero_grad()用法
这段代码是一个训练函数,接收训练数据集、模型、优化器、当前训练轮数和最佳损失作为参数。在函数内部,首先将模型设为训练模式,然后通过一个循环遍历训练数据集,进行前向传播得到模型的输出结果,然后计算loss,并通过反向传播更新模型参数。同时,记录loss值并进行可视化输出。其中,loss函数采用了加权的方式,通过对loss2、loss3和loss4进行不同的加权求和得到最终的loss值。
具体来说,这段代码中,使用了一个AvgMeter类来记录loss值,该类会在每次更新时自动计算当前的平均值。在每轮训练结束后,会输出当前训练轮数、当前处理的batch数、loss2、loss3和loss4的值。如果当前batch数是20的倍数或者已经处理完所有的batch,则会进行一次可视化输出。同时,为了防止梯度爆炸,使用了torch.nn.utils.clip_grad_norm_()函数来进行梯度裁剪。
阅读全文