构建一个全连接网络,网络中只允许存在Linear层(层数不得超过5),可以调节的超参数为learning_rate和epoch(eopch不得超过50)。使用FashionMNIST数据集训练并测试网络的精度,将最优(在测试集上的精度)的模型保存为model.pth文件,
时间: 2024-11-25 15:19:51 浏览: 34
构建一个全连接神经网络(也称为多层感知机,MLP)仅包含线性层的情况,我们可以按照以下步骤进行:
1. 导入必要的库:
```python
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision.datasets import FashionMNIST
from torchvision.transforms import ToTensor
```
2. 定义网络结构:
```python
class LinearNet(nn.Module):
def __init__(self, input_dim, num_classes=10, max_layers=5):
super(LinearNet, self).__init__()
layers = [nn.Linear(input_dim, hidden_size) for _ in range(max_layers - 1)]
layers.append(nn.Linear(hidden_size, num_classes)) # 最后一层是输出层
self.layers = nn.Sequential(*layers)
def forward(self, x):
return self.layers(x)
```
这里假设隐层大小`hidden_size`未指定,可以根据需要设置。
3. 设置超参数:
```python
input_dim = 784 # FashionMNIST每张图片的像素数
num_classes = 10
max_epochs = 50
learning_rate = 0.001
```
4. 加载和预处理数据:
```python
train_dataset = FashionMNIST(root='./data', train=True, transform=ToTensor(), download=True)
test_dataset = FashionMNIST(root='./data', train=False, transform=ToTensor())
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
```
5. 训练网络:
```python
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = LinearNet(input_dim).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate)
best_accuracy = 0
for epoch in range(max_epochs):
net.train()
running_loss = 0.0
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = net(inputs.to(device))
loss = criterion(outputs, labels.to(device))
loss.backward()
optimizer.step()
running_loss += loss.item()
net.eval()
with torch.no_grad():
correct = 0
total = 0
for inputs, labels in test_loader:
outputs = net(inputs.to(device))
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels.to(device)).sum().item()
accuracy = 100 * correct / total
print(f'Epoch {epoch+1}/{max_epochs}, Loss: {running_loss / len(train_loader):.4f}, Accuracy: {accuracy:.2f}%')
if accuracy > best_accuracy:
best_accuracy = accuracy
torch.save(net.state_dict(), 'model.pth')
```
在这个过程中,网络会在每个epoch结束后在测试集上计算精度,并检查是否达到最佳性能。如果找到更好的模型,就将其权重保存到'model.pth'文件中。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20250102104920.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)