def train(model, train_loader, criterion, optimizer): model.train() running_loss = 0.0 for inputs, _ in train_loader: inputs = inputs.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() * inputs.size(0) epoch_loss = running_loss / len(train_loader.dataset) return epoch_loss,在这段代码中怎么定义"labels啊
时间: 2024-02-28 14:54:42 浏览: 150
在这段代码中,"labels" 这个变量并没有被定义或传入。因此,如果你尝试执行这段代码,会出现与 "labels" 相关的错误。
通常情况下,"labels" 变量应该是和输入数据 "inputs" 一起被加载到 "train_loader" 中的。在循环迭代 "train_loader" 时,应该从"train_loader" 返回一个元组,包含输入数据和对应的标签数据。因此,我们可以通过以下方式获取 "labels" 变量:
```
for inputs, labels in train_loader:
inputs = inputs.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
...
```
这里的 "labels" 变量就是从 "train_loader" 中获取的标签数据。然后,我们可以将其传入到 "criterion" 函数中计算损失。
相关问题
def train(model, loader, criterion, optimizer, device): model.train() running_loss = 0.0 correct = 0 total = 0 for batch_idx, (inputs, labels) in enumerate(loader): inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() _, predicted = torch.max(outputs, 1) _, true_labels = torch.max(labels, 1) total += true_labels.size(0) correct += (predicted == true_labels).sum().item() print("Train Loss: {:.4f}, Acc: {:.2f}%".format(running_loss / (batch_idx + 1), 100 * correct / total))
这是一个用于训练模型的函数。以下是函数的详细解释:
- `train` 函数接受五个参数:`model`(模型),`loader`(数据加载器),`criterion`(损失函数),`optimizer`(优化器)和 `device`(设备)。
- 在函数开始时,将模型设置为训练模式(`model.train()`)。
- 初始化 `running_loss`(累计损失值),`correct`(正确预测的数量)和 `total`(总样本数)为零。
- 使用 `enumerate(loader)` 迭代数据加载器中的批次数据。
- 将输入数据和标签移到指定的设备上(`inputs, labels = inputs.to(device), labels.to(device)`)。
- 清空优化器的梯度(`optimizer.zero_grad()`)。
- 通过模型前向传播计算输出(`outputs = model(inputs)`)。
- 计算损失值(`loss = criterion(outputs, labels)`)。
- 根据损失值计算梯度并进行反向传播(`loss.backward()`)。
- 使用优化器更新模型的参数(`optimizer.step()`)。
- 累计损失值(`running_loss += loss.item()`)。
- 计算预测值和真实标签的正确数量(`_, predicted = torch.max(outputs, 1)` 和 `_, true_labels = torch.max(labels, 1)`)。
- 更新总样本数(`total += true_labels.size(0)`)和正确预测的数量(`correct += (predicted == true_labels).sum().item()`)。
- 在每个批次结束后,打印训练损失和准确率(`print("Train Loss: {:.4f}, Acc: {:.2f}%".format(running_loss / (batch_idx + 1), 100 * correct / total))`)。
这个函数用于训练模型。它使用给定的数据加载器迭代数据批次,计算损失并进行反向传播更新模型参数,同时计算训练损失和准确率。
net = LeNet5() paddle.summary(net,(-1,1,img_size,img_size)) from paddle.metric import Accuracy save_dir = "model/lenet_2" epoch = 5 lr = 0.01 weight_decay = 5e-4 batch_size = 64 model = paddle.Model(net) optim = paddle.optimizer.Adam(learning_rate=lr,parameter=model.parameters(),weight_decay=weight_decay) model.prepare(optim,paddle.nn.CrossEntropyloss(),paddle.nn.Accuracy()) model.fit(train_dataset,epochs=epoch,batch_size=batch_size,save_dir=save_dir,verbose=1) best_model_path = "model/lenet_2/final.pdparams" net = LeNet5() model = paddle.Model(net) model.load(best_model_path) model.prepare(optim,paddle.nn.CrossEntropyloss(),Accuracy()) results = model.evaluate(test_dataset,batch_size=batch_size,verbose=1) print(results)在pytorch中如何表示
在 PyTorch 中,上述代码可以表示为:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
class LeNet5(nn.Module):
def __init__(self):
super(LeNet5, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.pool1 = nn.MaxPool2d(2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.pool2 = nn.MaxPool2d(2)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool1(torch.relu(self.conv1(x)))
x = self.pool2(torch.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
train_dataset = # 加载训练数据集
test_dataset = # 加载测试数据集
batch_size = 64
epoch = 5
lr = 0.01
weight_decay = 5e-4
save_dir = "model/lenet_2"
best_model_path = "model/lenet_2/final.pt"
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = LeNet5().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=lr, weight_decay=weight_decay)
# 训练模型
for epoch in range(epoch):
net.train()
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch {epoch+1}, loss: {running_loss/len(train_loader):.4f}")
torch.save(net.state_dict(), best_model_path)
# 测试模型
net.load_state_dict(torch.load(best_model_path))
net.eval()
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = correct / total
print(f"Accuracy on test set: {accuracy:.4f}")
```
阅读全文