分割模型数据已加载,模型定义完成,请输出训练代码。模型如下model1.segmentation_head[0] = nn.Conv2d(in_channels, 3, kernel_size=3, padding=1)
时间: 2023-04-05 09:02:51 浏览: 169
非常感谢您的问题。以下是训练代码:
```
import torch
import torch.nn as nn
import torch.optim as optim
# 定义模型
class Model1(nn.Module):
def __init__(self, in_channels):
super(Model1, self).__init__()
self.segmentation_head = nn.Sequential(
nn.Conv2d(in_channels, 3, kernel_size=3, padding=1)
)
def forward(self, x):
x = self.segmentation_head(x)
return x
# 加载数据
train_data = ...
train_loader = torch.utils.data.DataLoader(train_data, batch_size=32, shuffle=True)
# 定义损失函数和优化器
model = Model1(in_channels=3)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('Epoch %d loss: %.3f' % (epoch + 1, running_loss / len(train_loader)))
```
阅读全文