var img = ee.ImageCollection('COPERNICUS/S2_SR') .select('B.*');var roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838); var sample = img.addBands(lc).stratifiedSample({ numPoints: 1000, classBand: label, region: table, scale: 10, geometries: true });报错Line 16: img.addBands is not a function

时间: 2024-01-31 16:04:28 浏览: 131
该错误是因为 `img` 是一个 `ImageCollection` 对象,而 `addBands()` 方法是 `ee.Image` 对象的方法,不能直接用于 `ImageCollection` 对象上。你需要先选择一张图像来进行 `addBands()` 操作。以下是修改后的代码: ``` var img = ee.ImageCollection('COPERNICUS/S2_SR') .select('B.*').first(); // 选择第一张图像 var roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838); var sample = img.addBands(lc).stratifiedSample({ numPoints: 1000, classBand: label, region: table, scale: 10, geometries: true }); ``` 需要注意的是,`first()` 方法用于选择图像集合中的第一张图像,如果你需要选择其他图像,可以使用 `filter()` 方法来筛选。
相关问题

var imgCollection = ee.ImageCollection('COPERNICUS/S2_SR') .filterDate('2021-01-01', '2021-12-31') .select('B.*');// 添加土地覆被作为反射图像的波段,并从感兴趣区域内的每个土地覆被类别中以10米的比例采样100个像素。 var roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838); var sample = imgCollection.addBands(lc).stratifiedSample({ numPoints: 100, classBand: label, region: roi, scale: 10, geometries: true });报错Line 17: imgCollection.addBands is not a function

这个错误提示是因为在你的代码中,lc 和 label 变量没有被定义。请确保你已经定义了这两个变量,并且 lc 是一个土地覆盖数据的图像对象,label 是一个包含土地覆盖类别的波段名称。例如: ``` var lc = ee.Image('USGS/NLCD/NLCD2016').select('landcover'); var label = 'landcover'; var roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838); var imgCollection = ee.ImageCollection('COPERNICUS/S2_SR') .filterDate('2021-01-01', '2021-12-31') .select('B.*'); var sample = imgCollection.addBands(lc).stratifiedSample({ numPoints: 100, classBand: label, region: roi, scale: 10, geometries: true }); ``` 请注意,lc 变量需要根据你的需求修改为对应的土地覆盖数据图像。

var roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838); var imgCollection = ee.ImageCollection('COPERNICUS/S2_SR') .filterBounds(roi) .filterDate('2021-01-01', '2021-12-31') .select('B.*'); var lc = ee.Image('ESA/WorldCover/v100/2020'); var classValues = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100]; var remapValues = ee.List.sequence(0, 10); var label = 'lc'; lc = lc.remap(classValues, remapValues).rename(label).toByte(); var sample = imgCollection.map(function(img) { var sample = img.addBands(lc).stratifiedSample({ numPoints: 100, classBand: label, region: roi, scale: 10, geometries: true }); return sample; }).flatten(); // 向样本中添加一个随机值字段,并使用它将大约80%的特征划分为定型集,20%的特征划分为验证集。 sample = sample.randomColumn(); var trainingSample = sample.filter('random <= 0.8'); var validationSample = sample.filter('random > 0.8'); // 从训练样本中训练SVM分类器(C-SVM分类、投票决策过程、线性核)。 var trainedClassifier = ee.Classifier.libsvm().train({ features: trainingSample, classProperty: label, inputProperties: imgCollection.first().bandNames() }); // 获取有关已训练分类器的信息。 print('Results of trained classifier', trainedClassifier.explain()); // 获取训练样本的混淆矩阵和总体准确性。 var trainAccuracy = trainedClassifier.confusionMatrix(); print('Training error matrix', trainAccuracy); print('Training overall accuracy', trainAccuracy.accuracy()); // 获得验证样本的混淆矩阵和总体精度。 validationSample = validationSample.classify(trainedClassifier); var validationAccuracy = validationSample.errorMatrix(label, 'classification'); print('Validation error matrix', validationAccuracy); print('Validation accuracy', validationAccuracy.accuracy()); // 对来自训练好的分类器的反射图像进行分类。 var img = imgCollection.mosaic(); var imgClassified = img.classify(trainedClassifier); // 请帮我详细解释这段代码的变量和含义。

这段代码使用 Google Earth Engine 平台进行遥感图像分类。以下是代码中的各个变量和含义: - `roi`:感兴趣区域(Region of Interest),在这里是一个矩形区域。 - `imgCollection`:遥感影像数据集合,包含了 Sentinel-2 卫星的表面反射率数据。 - `lc`:地表覆盖分类数据集,包含了全球的地表覆盖类型。 - `classValues`:地表覆盖分类数据集中各类别的数值表示。 - `remapValues`:将地表覆盖分类数据集中的类别数值映射为 0-10 范围内的整数。 - `label`:用于分类的标签名称,这里是地表覆盖分类数据集中的类别。 - `sample`:从 Sentinel-2 影像中随机选取的样本点,包含了地表反射率和地表覆盖分类数据。 - `trainingSample`:用于训练分类器的样本集,包含了 80% 的样本点。 - `validationSample`:用于验证分类器性能的样本集,包含了 20% 的样本点。 - `trainedClassifier`:训练好的 SVM 分类器。 - `trainAccuracy`:训练样本的混淆矩阵和总体准确性。 - `validationAccuracy`:验证样本的混淆矩阵和总体精度。 - `img`:遥感影像的合成影像,用于进行分类。 - `imgClassified`:使用训练好的分类器对遥感影像进行分类后的结果。 在这个代码中,主要的流程是从 Sentinel-2 影像中随机选取样本点,然后使用地表覆盖分类数据集对这些样本点进行标注。接着,使用训练样本集来训练 SVM 分类器,并使用验证样本集来验证分类器的性能。最后,使用训练好的分类器对遥感影像进行分类。
阅读全文

相关推荐

大家在看

recommend-type

s典型程序例子.docx

s典型程序例子.docx
recommend-type

data10m39b_10机39节点数据_39节点_节点_

此代码IEEE10机39节点标准系统的基于MATLAB的暂态源程序数据,可以实现系统暂态稳定性分析
recommend-type

IS-GPS-200N ICD文件

2022年8月最新发布
recommend-type

[] - 2023-08-09 算法工程师炼丹Tricks手册(附1090页PDF下载).pdf

kaggle竞赛资料,AI人工智能算法介绍,技术详解 kaggle竞赛资料,AI人工智能算法介绍,技术详解 kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解kaggle竞赛资料,AI人工智能算法介绍,技术详解
recommend-type

马尔科夫车速预测的代码.txt

利用马尔科夫对未来车速进行预测,在matlab环境下实现

最新推荐

recommend-type

学生信息管理系统-----------无数据库版本

学生信息管理系统-----------无数据库版本。资源来源于网络分享,如有侵权请告知!
recommend-type

2024年福建省村级(居委会)行政区划shp数据集

2024年福建省村级(居委会)行政区划shp数据集 坐标系:WGS1984
recommend-type

win32汇编环境,对话框中显示bmp图像文件

win32汇编环境,对话框中显示bmp图像文件
recommend-type

基于STM8单片机的红外接收键码值送LCD显示实验.zip

基于STM8单片机的编程实例,可供参考学习使用,希望对你有所帮助
recommend-type

电动汽车动力系统匹配计算模型:输入整车参数及性能要求,一键生成驱动系统的扭矩功率峰值转速等参数 2、整车动力经济性计算模型:包含NEDC WLTC CLTC工况,输入整车参数可生成工况电耗、百公里电

电动汽车动力系统匹配计算模型:输入整车参数及性能要求,一键生成驱动系统的扭矩功率峰值转速等参数。 2、整车动力经济性计算模型:包含NEDC WLTC CLTC工况,输入整车参数可生成工况电耗、百公里电耗、匀速工况续航、百公里电耗等信息。 实际项目中使用的计算仿真模型.
recommend-type

GitHub Classroom 创建的C语言双链表实验项目解析

资源摘要信息: "list_lab2-AquilesDiosT"是一个由GitHub Classroom创建的实验项目,该项目涉及到数据结构中链表的实现,特别是双链表(doble lista)的编程练习。实验的目标是通过编写C语言代码,实现一个双链表的数据结构,并通过编写对应的测试代码来验证实现的正确性。下面将详细介绍标题和描述中提及的知识点以及相关的C语言编程概念。 ### 知识点一:GitHub Classroom的使用 - **GitHub Classroom** 是一个教育工具,旨在帮助教师和学生通过GitHub管理作业和项目。它允许教师创建作业模板,自动为学生创建仓库,并提供了一个清晰的结构来提交和批改学生作业。在这个实验中,"list_lab2-AquilesDiosT"是由GitHub Classroom创建的项目。 ### 知识点二:实验室参数解析器和代码清单 - 实验参数解析器可能是指实验室中用于管理不同实验配置和参数设置的工具或脚本。 - "Antes de Comenzar"(在开始之前)可能是一个实验指南或说明,指示了实验的前提条件或准备工作。 - "实验室实务清单"可能是指实施实验所需遵循的步骤或注意事项列表。 ### 知识点三:C语言编程基础 - **C语言** 作为编程语言,是实验项目的核心,因此在描述中出现了"C"标签。 - **文件操作**:实验要求只可以操作`list.c`和`main.c`文件,这涉及到C语言对文件的操作和管理。 - **函数的调用**:`test`函数的使用意味着需要编写测试代码来验证实验结果。 - **调试技巧**:允许使用`printf`来调试代码,这是C语言程序员常用的一种简单而有效的调试方法。 ### 知识点四:数据结构的实现与应用 - **链表**:在C语言中实现链表需要对结构体(struct)和指针(pointer)有深刻的理解。链表是一种常见的数据结构,链表中的每个节点包含数据部分和指向下一个节点的指针。实验中要求实现的双链表,每个节点除了包含指向下一个节点的指针外,还包含一个指向前一个节点的指针,允许双向遍历。 ### 知识点五:程序结构设计 - **typedef struct Node Node;**:这是一个C语言中定义类型别名的语法,可以使得链表节点的声明更加清晰和简洁。 - **数据结构定义**:在`Node`结构体中,`void * data;`用来存储节点中的数据,而`Node * next;`用来指向下一个节点的地址。`void *`表示可以指向任何类型的数据,这提供了灵活性来存储不同类型的数据。 ### 知识点六:版本控制系统Git的使用 - **不允许使用git**:这是实验的特别要求,可能是为了让学生专注于学习数据结构的实现,而不涉及版本控制系统的使用。在实际工作中,使用Git等版本控制系统是非常重要的技能,它帮助开发者管理项目版本,协作开发等。 ### 知识点七:项目文件结构 - **文件命名**:`list_lab2-AquilesDiosT-main`表明这是实验项目中的主文件。在实际的文件系统中,通常会有多个文件来共同构成一个项目,如源代码文件、头文件和测试文件等。 总结而言,"list_lab2-AquilesDiosT"实验项目要求学生运用C语言编程知识,实现双链表的数据结构,并通过编写测试代码来验证实现的正确性。这个过程不仅考察了学生对C语言和数据结构的掌握程度,同时也涉及了软件开发中的基本调试方法和文件操作技能。虽然实验中禁止了Git的使用,但在现实中,版本控制的技能同样重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【三态RS锁存器CD4043的秘密】:从入门到精通的电路设计指南(附实际应用案例)

# 摘要 三态RS锁存器CD4043是一种具有三态逻辑工作模式的数字电子元件,广泛应用于信号缓冲、存储以及多路数据选择等场合。本文首先介绍了CD4043的基础知识和基本特性,然后深入探讨其工作原理和逻辑行为,紧接着阐述了如何在电路设计中实践运用CD4043,并提供了高级应用技巧和性能优化策略。最后,针对CD4043的故障诊断与排错进行了详细讨论,并通过综合案例分析,指出了设计挑战和未来发展趋势。本文旨在为电子工程师提供全面的CD4043应用指南,同时为相关领域的研究提供参考。 # 关键字 三态RS锁存器;CD4043;电路设计;信号缓冲;故障诊断;微控制器接口 参考资源链接:[CD4043
recommend-type

霍夫曼四元编码matlab

霍夫曼四元码(Huffman Coding)是一种基于频率最优的编码算法,常用于数据压缩中。在MATLAB中,你可以利用内置函数来生成霍夫曼树并创建对应的编码表。以下是简单的步骤: 1. **收集数据**:首先,你需要一个数据集,其中包含每个字符及其出现的频率。 2. **构建霍夫曼树**:使用`huffmandict`函数,输入字符数组和它们的频率,MATLAB会自动构建一棵霍夫曼树。例如: ```matlab char_freq = [freq1, freq2, ...]; % 字符频率向量 huffTree = huffmandict(char_freq);
recommend-type

MATLAB在AWS上的自动化部署与运行指南

资源摘要信息:"AWS上的MATLAB是MathWorks官方提供的参考架构,旨在简化用户在Amazon Web Services (AWS) 上部署和运行MATLAB的流程。该架构能够让用户自动执行创建和配置AWS基础设施的任务,并确保可以在AWS实例上顺利运行MATLAB软件。为了使用这个参考架构,用户需要拥有有效的MATLAB许可证,并且已经在AWS中建立了自己的账户。 具体的参考架构包括了分步指导,架构示意图以及一系列可以在AWS环境中执行的模板和脚本。这些资源为用户提供了详细的步骤说明,指导用户如何一步步设置和配置AWS环境,以便兼容和利用MATLAB的各种功能。这些模板和脚本是自动化的,减少了手动配置的复杂性和出错概率。 MathWorks公司是MATLAB软件的开发者,该公司提供了广泛的技术支持和咨询服务,致力于帮助用户解决在云端使用MATLAB时可能遇到的问题。除了MATLAB,MathWorks还开发了Simulink等其他科学计算软件,与MATLAB紧密集成,提供了模型设计、仿真和分析的功能。 MathWorks对云环境的支持不仅限于AWS,还包括其他公共云平台。用户可以通过访问MathWorks的官方网站了解更多信息,链接为www.mathworks.com/cloud.html#PublicClouds。在这个页面上,MathWorks提供了关于如何在不同云平台上使用MATLAB的详细信息和指导。 在AWS环境中,用户可以通过参考架构自动化的模板和脚本,快速完成以下任务: 1. 创建AWS资源:如EC2实例、EBS存储卷、VPC(虚拟私有云)和子网等。 2. 配置安全组和网络访问控制列表(ACLs),以确保符合安全最佳实践。 3. 安装和配置MATLAB及其相关产品,包括Parallel Computing Toolbox、MATLAB Parallel Server等,以便利用多核处理和集群计算。 4. 集成AWS服务,如Amazon S3用于存储,AWS Batch用于大规模批量处理,Amazon EC2 Spot Instances用于成本效益更高的计算任务。 此外,AWS上的MATLAB架构还包括了监控和日志记录的功能,让用户能够跟踪和分析运行状况,确保应用程序稳定运行。用户还可以根据自己的需求自定义和扩展这些模板和脚本。 在使用AWS上的MATLAB之前,用户需要了解MathWorks的许可协议,明确自己的许可证是否允许在云环境中使用MATLAB,并确保遵守相关法律法规。MathWorks提供了广泛的资源和支持,帮助用户快速上手,有效利用AWS资源,以及在云端部署和扩展MATLAB应用程序。 综上所述,AWS上的MATLAB参考架构是为希望在AWS云平台上部署MATLAB的用户提供的一种快速、简便的解决方案。它不仅减少了手动配置的复杂性,还为用户提供了广泛的资源和指导,以确保用户能够在云环境中高效、安全地使用MATLAB。"