弹簧阻尼倒立摆双足机器人根据双腿位置信息分别调用单支撑阶段、双支撑阶段行走ode45的MATLAB
时间: 2023-08-21 08:02:40 浏览: 87
弹簧阻尼倒立摆双足机器人的步态规划可以分为单支撑阶段和双支撑阶段。在单支撑阶段,机器人只有一条腿接触地面,而在双支撑阶段,机器人的两条腿都接触地面。下面是根据双腿位置信息分别调用单支撑阶段、双支撑阶段行走ode45的MATLAB示例代码:
```matlab
%% 定义参数
m1 = 1; % 上身质量
m2 = 0.1; % 腿部质量
l1 = 0.5; % 上身长度
l2 = 0.5; % 腿长
g = 9.8; % 重力加速度
k = 1000; % 弹簧刚度系数
c = 10; % 阻尼系数
T = 1; % 步长时间
%% 定义初始条件
x0 = [0; 0; pi; 0]; % 初始状态
tspan = [0, T]; % 时间区间
%% 单支撑阶段
% 获取腿部位置信息
y1 = l2 * cos(x0(1)) - l1 * sin(x0(3)) - l2 * cos(x0(3)) + l2 * cos(x0(1) + x0(2));
y2 = l2 * cos(x0(3)) - l1 * sin(x0(1)) - l2 * cos(x0(1)) + l2 * cos(x0(2));
% 定义ODE函数
f = @(t, x) [x(2);...
(m2 * l2 * sin(x(1)) * x(4)^2 + k * (y1 - y2) + c * (x(2) - x(4))) / (m1 + m2 - m2 * cos(x(1))^2);...
x(4);...
((m1 + m2) * g * sin(x(3)) - m2 * l2 * sin(x(3)) * x(2)^2 - k * (y1 - y2) - c * (x(4) - x(2))) / (l1 * (m1 + m2 - m2 * cos(x(1))^2))];
% 调用ode45求解ODE
[t, x] = ode45(f, tspan, x0);
%% 双支撑阶段
% 获取腿部位置信息
y1 = -l1 * sin(x(end, 3)) + l2 * cos(x(end, 3)) + l2 * cos(x(end, 1) + x(end, 2));
y2 = -l1 * sin(x(end, 1)) + l2 * cos(x(end, 1)) + l2 * cos(x(end, 2));
% 定义ODE函数
f = @(t, x) [x(2);...
(m2 * l2 * sin(x(1)) * x(4)^2 + m2 * l2 * sin(x(3)) * x(5)^2 + k * (y1 - y2) + c * (x(2) - x(4)) + c * (x(5) - x(3))) / (m1 + 2 * m2 - m2 * cos(x(1))^2 - m2 * cos(x(3))^2);...
x(4);...
((m1 + m2) * g * sin(x(3)) - m2 * l2 * sin(x(3)) * x(5)^2 - k * (y1 - y2) - c * (x(2) - x(4)) - c * (x(5) - x(3))) / (l1 * (m1 + 2 * m2 - m2 * cos(x(1))^2 - m2 * cos(x(3))^2));...
x(5);...
((m1 + m2) * g * sin(x(1)) - m2 * l2 * sin(x(1)) * x(4)^2 - k * (y1 - y2) - c * (x(2) - x(4)) - c * (x(5) - x(3))) / (l1 * (m1 + 2 * m2 - m2 * cos(x(1))^2 - m2 * cos(x(3))^2))];
% 调用ode45求解ODE
tspan = [T, 2*T]; % 时间区间
x0 = x(end, :); % 初始状态
[t, x] = ode45(f, tspan, x0);
```
需要注意的是,在进行ODE求解时,需要根据当前时间和机器人状态计算腿部位置信息,以满足单支撑和双支撑阶段的要求。
阅读全文