def infer(model, text): model.eval() # 数据处理 encoded_inputs = tokenizer(text, max_seq_len=max_seq_len) # 构造输入模型的数据 tokens = tokenizer.convert_ids_to_tokens(encoded_inputs["input_ids"]) input_ids = paddle.to_tensor(encoded_inputs["input_ids"], dtype="int64").unsqueeze(0) token_type_ids = paddle.to_tensor(encoded_inputs["token_type_ids"], dtype="int64").unsqueeze(0) # 模型预测 logits = model(input_ids=input_ids, token_type_ids=token_type_ids) # 解析标签 pred_labels = logits.argmax(axis=-1).numpy().tolist()[0] entities = metric.get_entities(pred_labels) infer_list = [] for entity in entities: ent_name, start, end = entity infer_list.append("".join(tokens[start: end+1])) print("label: ", infer_list) text = "佳丽海鲜酒楼宝福店,地址湖滨南路819号宝福大厦34楼,经典老店,位于莲板十字路口处,近外图!" infer(model, text)
时间: 2024-01-10 13:05:07 浏览: 230
这段代码是一个使用 PaddlePaddle 框架实现的文本分类模型推断代码。具体来说,它接受一个模型和一个文本作为输入,在对文本进行处理后,使用模型进行预测,并输出预测结果。其中,模型的输入经过 tokenizer 处理转化为数字 id,然后输入模型进行预测。最后,根据预测结果解析标签,输出匹配到的实体列表。这段代码的功能是对给定的文本进行实体识别,即从文本中识别出具有特定含义的实体。
相关问题
模型预测 实现一个模型预测的功能,以便比较容易地看到预测结果。当输入一串文本后,对该条文本进行数据处理,然后利用训练好的模型进行预测,并输出最终的预测标签。 In [11] def infer(model, text): model.eval() # 数据处理 encoded_inputs = tokenizer(text, max_seq_len=max_seq_len) # 构造输入模型的数据 tokens = tokenizer.convert_ids_to_tokens(encoded_inputs["input_ids"]) input_ids = paddle.to_tensor(encoded_inputs["input_ids"], dtype="int64").unsqueeze(0) token_type_ids = paddle.to_tensor(encoded_inputs["token_type_ids"], dtype="int64").unsqueeze(0) # 模型预测 logits = model(input_ids=input_ids, token_type_ids=token_type_ids) # 解析标签 pred_labels = logits.argmax(axis=-1).numpy().tolist()[0] entities = metric.get_entities(pred_labels) infer_list = [] for entity in entities: ent_name, start, end = entity infer_list.append("".join(tokens[start: end+1])) print("label: ", infer_list) text = "佳丽海鲜酒楼宝福店,地址湖滨南路819号宝福大厦34楼,经典老店,位于莲板十字路口处,近外图!" infer(model, text)
这段代码实现了使用训练好的模型进行预测的功能,具体实现过程如下:
首先通过调用 tokenizer 对输入的文本进行数据处理,并将处理后的数据构造成模型需要的输入格式(input_ids 和 token_type_ids),然后将这些数据输入到模型中进行预测。
预测结果是一个 logits 张量,通过取 logits 张量在最后一个维度上的最大值(argmax)可以得到预测标签。接着使用 metric.get_entities 方法解析预测标签,得到每个实体的名称、起始位置和结束位置,然后根据起始位置和结束位置从 tokens 中取出对应的文本,最后将预测出的实体名称输出到控制台。
以上就是这段代码的实现过程,可以通过传入不同的文本进行预测。
解释一段python代码 def async_inference(self, input_list): """Asynchronous inference""" num_inputs = len(input_list) meta_list = [] for i in range(num_inputs): meta = self._preprocess(input_list[i]) meta_list.append(meta) for i in range(num_inputs): self._model.requests[i].async_infer({self._input_blob: meta_list[i]}) output_queue = list(range(num_inputs)) outputs_list = [[] for _ in range(num_inputs)] while True: for i in output_queue: # Immediately returns a inference status without bloking or interrupting infer_status = self._model.requests[i].wait(0) if infer_status == StatusCode.RESULT_NOT_READY: continue print(f'Infer request {i} returned {infer_status}') if infer_status != StatusCode.OK: return -2 # Read infer request results ort_outs = self._model.requests[i].outputs results = self._postprocess(ort_outs) outputs_list[i] = results output_queue.remove(i) if not output_queue: break return outputs_list
这段Python代码实现了一个异步推理方法,它接受一个输入数据列表input_list作为参数。首先,它获取输入数据的数量num_inputs,并创建一个空列表meta_list用于存储每个输入数据的元数据。
然后,该方法使用一个循环遍历每个输入数据,将其传递给一个名为_preprocess的私有方法进行预处理,并将返回的元数据添加到meta_list中。
接下来,该方法使用另一个循环来遍历每个输入数据,并使用模型对象的requests属性来进行异步推理。在每次推理之后,该方法将输出结果存储在outputs_list中,并将其添加到已完成处理的输出队列output_queue中。如果所有输出结果都已处理完,则该方法退出循环,并返回输出结果列表outputs_list。
需要注意的是,该方法的实现可能需要一些其他的代码来初始化模型对象和输入/输出数据的名称。此外,在异步推理过程中,我们需要保证输出结果的顺序与输入数据的顺序一致。如果输出结果的顺序不正确,则可能会导致推理结果的错误。
阅读全文