def __getitem__(self, batch_index: int) -> [Tensor, Tensor]:
时间: 2023-06-09 07:05:37 浏览: 234
这是一个特殊方法,用于实现索引取值操作,一般用于支持对象的下标运算符(如 a[3])。在这里,它接受一个整数参数 batch_index,返回一个长度为 2 的列表,包含两个张量(Tensor)对象。这个方法用于数据集的取值操作,常常被用在模型训练过程中。
相关问题
class RandomDataset(torch.utils.data.Dataset): def __init__(self, data, length): self.data = data self.len = length def __getitem__(self, index): # print("self.data:", self.data.shape) return torch.Tensor(self.data[index, :, :, :]).float() def __len__(self): return self.len trn_loader = torch.utils.data.DataLoader(dataset=RandomDataset(Training_lable, 89600), batch_size=args.batch_size, shuffle=True, **kwopt, drop_last=False) return trn_loader
这段代码定义了一个名为 "RandomDataset" 的数据集类,并定义了该类的构造函数、__getitem__ 和 __len__ 方法。构造函数 __init__ 接收两个参数:data 和 length。其中,data 是输入数据,length 是数据集的长度。__getitem__ 方法用于获取指定索引的数据。在该方法中,代码首先从输入数据中获取指定索引的数据,然后将其转换成 torch.Tensor,并将其返回。__len__ 方法返回该数据集的长度。
接下来,代码创建了一个名为 "trn_loader" 的数据加载器,该加载器使用 RandomDataset 类创建数据集,并使用 batch_size、shuffle 和 **kwopt 等参数进行配置。最后,代码返回了该数据加载器。该代码的目的是将训练数据和标签转换成 torch.Tensor,并创建一个 PyTorch 数据加载器,以便进行机器学习模型的训练。
def __getitem__(self, index): if self.args.cached: (label, _, image) = self.data[index] else: (label, _file) = self.file_indexes[index] image = self._load_rml(_file) n_label = self.classes.index(label) return torch.tensor(image).float(), torch.tensor(n_label).long()把这段代码基于pytorch改为基于mindspore
以下是基于MindSpore的代码实现:
```
import mindspore.dataset as ds
import mindspore.dataset.transforms.py_transforms as py_transforms
import mindspore.common.dtype as mstype
import numpy as np
class MyDataset:
def __init__(self, args):
self.args = args
self.classes = sorted(list(set([item[0] for item in self.args.data])))
self.data = self.args.data
self.file_indexes = [(item[0], idx) for idx, item in enumerate(self.args.data)]
def _load_rml(self, file):
# 加载数据的代码
pass
def __getitem__(self, index):
if self.args.cached:
(label, _, image) = self.data[index]
else:
(label, file_idx) = self.file_indexes[index]
image = self._load_rml(self.args.data[file_idx][1])
n_label = self.classes.index(label)
return np.array(image).astype(np.float32), np.array(n_label).astype(np.int32)
def __len__(self):
return len(self.file_indexes)
# 数据增强
transform = py_transforms.Compose([
py_transforms.Resize((224, 224)),
py_transforms.RandomHorizontalFlip(),
py_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 数据集加载
ds.config.set_seed(1)
ds_train = ds.GeneratorDataset(MyDataset(args), ["image", "label"])
ds_train = ds_train.shuffle(buffer_size=1000)
ds_train = ds_train.batch(batch_size=args.batch_size, drop_remainder=True)
ds_train = ds_train.map(operations=transform, input_columns="image", num_parallel_workers=4)
ds_train = ds_train.map(operations=lambda x, y: (mindspore.Tensor(x, mstype.float32), mindspore.Tensor(y, mstype.int32)))
```
注意:MindSpore的数据增强需要使用`transforms`模块中的函数,而数据集加载则需要使用`GeneratorDataset`类。在MindSpore中,需要使用`mindspore.Tensor`将数据转换为张量类型。
阅读全文