bert后接attention代码
时间: 2023-05-28 09:05:42 浏览: 91
attention代码
下面是BERT模型中的Attention代码示例:
```
class MultiHeadAttention(nn.Module):
def __init__(self, hidden_size, num_heads, dropout=0.1):
super(MultiHeadAttention, self).__init__()
self.hidden_size = hidden_size
self.num_heads = num_heads
self.head_size = hidden_size // num_heads
self.dropout = nn.Dropout(dropout)
# 定义线性变换矩阵
self.q_linear = nn.Linear(hidden_size, hidden_size)
self.k_linear = nn.Linear(hidden_size, hidden_size)
self.v_linear = nn.Linear(hidden_size, hidden_size)
self.out_linear = nn.Linear(hidden_size, hidden_size)
def split_heads(self, x, batch_size):
"""
将输入的x按照头数进行划分,返回划分后的张量
"""
x = x.view(batch_size, -1, self.num_heads, self.head_size)
return x.transpose(1, 2)
def forward(self, query, key, value, mask=None):
batch_size = query.size(0)
# 线性变换
q = self.q_linear(query)
k = self.k_linear(key)
v = self.v_linear(value)
# 按照头数进行划分
q = self.split_heads(q, batch_size)
k = self.split_heads(k, batch_size)
v = self.split_heads(v, batch_size)
# 计算注意力分数
scores = torch.matmul(q, k.transpose(-1, -2)) / math.sqrt(self.head_size)
# mask
if mask is not None:
mask = mask.unsqueeze(1)
scores = scores.masked_fill(mask == 0, -1e9)
# softmax
attention = nn.Softmax(dim=-1)(scores)
# dropout
attention = self.dropout(attention)
# 加权求和
context = torch.matmul(attention, v)
# 合并多头
context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.hidden_size)
# 线性变换
output = self.out_linear(context)
return output
```
该代码实现了BERT中的多头自注意力机制。其中,输入的query、key和value都是形状为[batch_size, seq_len, hidden_size]的三维张量。在MultiHeadAttention类的forward方法中,首先对query、key和value进行线性变换,然后按照头数进行划分。接着,计算注意力分数并进行softmax操作,然后进行dropout和加权求和。最后,将多头合并,再进行一次线性变换,输出形状为[batch_size, seq_len, hidden_size]的张量。
阅读全文