给出数据不平衡处理的python代码示例
时间: 2023-08-04 16:02:47 浏览: 105
好的,下面是一些处理数据不平衡问题的Python代码示例:
1. 随机过采样(Random Over-Sampling)
```python
from imblearn.over_sampling import RandomOverSampler
# X_train, y_train 为训练数据,其中 y_train 中少数类样本数量较少
ros = RandomOverSampler(random_state=0)
X_resampled, y_resampled = ros.fit_resample(X_train, y_train)
```
2. 随机欠采样(Random Under-Sampling)
```python
from imblearn.under_sampling import RandomUnderSampler
# X_train, y_train 为训练数据,其中 y_train 中多数类样本数量较多
rus = RandomUnderSampler(random_state=0)
X_resampled, y_resampled = rus.fit_resample(X_train, y_train)
```
3. SMOTE(Synthetic Minority Over-sampling Technique)
```python
from imblearn.over_sampling import SMOTE
# X_train, y_train 为训练数据,其中 y_train 中少数类样本数量较少
smote = SMOTE(random_state=0)
X_resampled, y_resampled = smote.fit_resample(X_train, y_train)
```
4. ADASYN(Adaptive Synthetic Sampling)
```python
from imblearn.over_sampling import ADASYN
# X_train, y_train 为训练数据,其中 y_train 中少数类样本数量较少
adasyn = ADASYN(random_state=0)
X_resampled, y_resampled = adasyn.fit_resample(X_train, y_train)
```
5. Focal Loss
```python
import tensorflow as tf
# y_true 为真实标签,y_pred 为预测标签,其中 y_true 中少数类样本数量较少
def focal_loss(gamma=2., alpha=.25):
def focal_loss_fixed(y_true, y_pred):
eps = 1e-12
y_pred = tf.clip_by_value(y_pred, eps, 1. - eps)
y_true = tf.cast(y_true, tf.float32)
alpha_t = y_true * alpha + (1 - y_true) * (1 - alpha)
pt = tf.where(tf.equal(y_true, 1), y_pred, 1 - y_pred)
focal_weight = alpha_t * tf.pow(1. - pt, gamma)
loss = focal_weight * tf.nn.sigmoid_cross_entropy_with_logits(labels=y_true, logits=y_pred)
return tf.reduce_mean(loss)
return focal_loss_fixed
```
这些代码示例都需要使用对应的Python库来实现,例如`imblearn`库用于处理不平衡数据问题,`tensorflow`库用于构建深度学习模型。在实际应用中,还需要根据具体情况进行参数调整和模型选择。
阅读全文