python实现ADASYN处理不平衡数据
时间: 2023-10-02 11:04:44 浏览: 232
ADASYN(Adaptive Synthetic Sampling)是一种用于解决不平衡数据问题的算法,它可以根据数据分布的密度进行自适应地合成少数类样本。下面是Python实现ADASYN处理不平衡数据的示例代码:
```python
import numpy as np
from collections import Counter
def adasyn(X, y, n_neighbors=5, ratio=0.5, beta=1.0):
"""
ADASYN算法处理不平衡数据
:param X: 特征矩阵
:param y: 标签向量
:param n_neighbors: 每个少数类样本选择的近邻数
:param ratio: 合成的少数类样本数目与原少数类样本数目之比
:param beta: 分布密度偏向因子,控制合成样本在密度稀疏区域的生成量
:return: 合成后的特征矩阵和标签向量
"""
# 统计每个类别的样本数
counter = Counter(y)
majority_class = max(counter, key=counter.get)
minority_class = min(counter, key=counter.get)
n_samples = len(X)
n_minority = counter[minority_class]
n_synthetic = int(ratio * n_minority)
# 计算每个样本的分布密度
dist = np.zeros(n_samples)
for i in range(n_samples):
dist[i] = np.sum(np.square(X[i] - X), axis=1)
dist /= np.max(dist)
# 合成新的少数类样本
synthetic_X = []
synthetic_y = []
for i in range(n_samples):
if y[i] == minority_class:
# 找到样本i的近邻
neighbors = np.argsort(dist)[1:n_neighbors + 1]
neighbors = neighbors[y[neighbors] == majority_class]
if len(neighbors) > 0:
# 根据密度比例计算合成样本的数量
g = np.sum(dist[neighbors]) / len(neighbors)
n = int(beta * g)
for j in range(n):
# 生成合成样本
k = np.random.choice(neighbors)
diff = X[k] - X[i]
synthetic = X[i] + np.random.rand() * diff
synthetic_X.append(synthetic)
synthetic_y.append(minority_class)
# 合并原始样本和合成样本
synthetic_X = np.array(synthetic_X)
synthetic_y = np.array(synthetic_y)
X_resampled = np.vstack((X, synthetic_X))
y_resampled = np.hstack((y, synthetic_y))
return X_resampled, y_resampled
```
示例用法:
```python
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
# 生成不平衡数据集
X, y = make_classification(n_samples=10000, n_features=20, n_informative=10, n_redundant=5,
weights=[0.9, 0.1], random_state=42)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 使用ADASYN算法处理不平衡数据
X_resampled, y_resampled = adasyn(X_train, y_train, n_neighbors=5, ratio=0.5, beta=1.0)
# 训练模型
clf = LogisticRegression(random_state=42)
clf.fit(X_resampled, y_resampled)
# 在测试集上评估模型
y_pred = clf.predict(X_test)
print(classification_report(y_test, y_pred))
```
参考文献:[Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. ADASYN: Adaptive Synthetic Sampling for Imbalanced Learning. In: Proc. 2008 IEEE Intl. Joint Conf. on Neural Networks (IJCNN 2008), pp. 1322-1328, June 2008.](https://sci2s.ugr.es/keel/pdf/algorithm/congreso/2008-He-ijcnn.pdf)
阅读全文