apriori算法 数据集
时间: 2023-11-15 16:01:27 浏览: 161
数据挖掘Apriori的数据集
Apriori算法是一种用于挖掘关联规则的算法,它可以从大规模数据集中寻找出频繁出现的项集,进而发现项集之间的关联规则。在Apriori算法中,数据集被表示为一个事务集合,每个事务包含多个项。项集是指包含一个或多个项的集合,频繁项集是指在数据集中出现频率较高的项集。Apriori算法通过迭代的方式,从单个项开始,逐步生成包含更多项的频繁项集,直到无法继续生成为止。在生成频繁项集的过程中,Apriori算法使用了支持度和置信度两个指标来评估项集之间的关联性。支持度指项集在数据集中出现的频率,置信度指在包含某个项集的事务中,另一个项集也出现的概率。
阅读全文