比较6维UKF,EKF和PF的均方根误差(RMSE)的matlab代码。其中所有函数直接定义
时间: 2023-08-31 15:20:37 浏览: 92
### 回答1:
下面是一个简单的实现,以估计一个无人机的位置和速度为例:
1. 定义函数
```
function [x_est, P_est, rmse] = compare_filters(x_true, z, Q, R, dt)
% x_true: 真实状态
% z: 测量值
% Q: 过程噪声协方差矩阵
% R: 测量噪声协方差矩阵
% dt: 时间步长
% UKF参数
alpha = 0.001;
beta = 2;
kappa = 0;
% 初始状态
x0 = [0; 0; 0; 10; 0; 0];
P0 = diag([10, 10, 10, 1, 1, 1]);
% EKF
[x_est_ekf, P_est_ekf] = ekf(x0, P0, z, Q, R, dt);
% UKF
[x_est_ukf, P_est_ukf] = ukf(x0, P0, z, Q, R, dt, alpha, beta, kappa);
% PF参数
N = 200; % 粒子数
resampling_strategy = 'systematic'; % 重采样策略
% PF
[x_est_pf, P_est_pf] = pf(x0, P0, z, Q, R, dt, N, resampling_strategy);
% 计算RMSE
rmse_ekf = sqrt(mean((x_true - x_est_ekf).^2, 2));
rmse_ukf = sqrt(mean((x_true - x_est_ukf).^2, 2));
rmse_pf = sqrt(mean((x_true - x_est_pf).^2, 2));
% 输出结果
disp(['EKF RMSE: ', num2str(rmse_ekf')]);
disp(['UKF RMSE: ', num2str(rmse_ukf')]);
disp(['PF RMSE: ', num2str(rmse_pf')]);
% 返回估计状态和协方差矩阵
x_est = {x_est_ekf, x_est_ukf, x_est_pf};
P_est = {P_est_ekf, P_est_ukf, P_est_pf};
% 返回RMSE
rmse = [rmse_ekf, rmse_ukf, rmse_pf];
end
```
2. 定义EKF函数
```
function [x_est, P_est] = ekf(x0, P0, z, Q, R, dt)
% x0: 初始状态
% P0: 初始协方差矩阵
% z: 测量值
% Q: 过程噪声协方差矩阵
% R: 测量噪声协方差矩阵
% dt: 时间步长
% 状态转移矩阵
A = [eye(3), dt*eye(3);
zeros(3), eye(3)];
% 观测矩阵
H = [eye(3), zeros(3)];
% 初始化状态和协方差矩阵
x_est = x0;
P_est = P0;
% 预测
x_pred = A * x_est;
P_pred = A * P_est * A' + Q;
% 更新
K = P_pred * H' * inv(H * P_pred * H' + R);
x_est = x_pred + K * (z - H * x_pred);
P_est = (eye(6) - K * H) * P_pred;
end
```
3. 定义UKF函数
```
function [x_est, P_est] = ukf(x0, P0, z, Q, R, dt, alpha, beta, kappa)
% x0: 初始状态
% P0: 初始协方差矩阵
% z: 测量值
% Q: 过程噪声协方差矩阵
% R: 测量噪声协方差矩阵
% dt: 时间步长
% alpha, beta, kappa: UKF参数
% 状态转移矩阵
A = [eye(3), dt*eye(3);
zeros(3), eye(3)];
% 观测矩阵
H = [eye(3), zeros(3)];
% 初始化状态和协方差矩阵
x_est = x0;
P_est = P0;
% UKF参数
n = length(x_est);
lambda = alpha^2 * (n + kappa) - n;
Wm = [lambda/(n+lambda), 0.5/(n+lambda)+zeros(1,2*n)];
Wc = Wm;
Wc(1) = Wc(1) + (1 - alpha^2 + beta);
sqrt_n_lambda = sqrt(n+lambda);
% 预测
sigma_points = sigmaPoints(x_est, P_est, lambda);
x_pred = zeros(n,1);
X_pred = zeros(n,2*n+1);
for i=1:2*n+1
X_pred(:,i) = A * sigma_points(:,i);
x_pred = x_pred + Wm(i) * X_pred(:,i);
end
P_pred = Q;
for i=1:2*n+1
P_pred = P_pred + Wc(i) * (X_pred(:,i) - x_pred) * (X_pred(:,i) - x_pred)';
end
% 更新
Z_pred = H * X_pred;
z_pred = zeros(size(z));
Pzz = R;
Pxz = zeros(n,3);
for i=1:2*n+1
z_pred = z_pred + Wm(i) * Z_pred(:,i);
end
for i=1:2*n+1
Pzz = Pzz + Wc(i) * (Z_pred(:,i) - z_pred) * (Z_pred(:,i) - z_pred)';
Pxz = Pxz + Wc(i) * (X_pred(:,i) - x_pred) * (Z_pred(:,i) - z_pred)';
end
K = Pxz * inv(Pzz);
x_est = x_pred + K * (z - z_pred);
P_est = P_pred - K * Pzz * K';
end
function X = sigmaPoints(x, P, lambda)
n = length(x);
X = zeros(n,2*n+1);
X(:,1) = x;
sqrt_n_lambda = sqrt(n+lambda);
for i=1:n
X(:,i+1) = x + sqrt_n_lambda * chol(P,'lower')(:,i);
X(:,i+n+1) = x - sqrt_n_lambda * chol(P,'lower')(:,i);
end
end
```
4. 定义PF函数
```
function [x_est, P_est] = pf(x0, P0, z, Q, R, dt, N, resampling_strategy)
% x0: 初始状态
% P0: 初始协方差矩阵
% z: 测量值
% Q: 过程噪声协方差矩阵
% R: 测量噪声协方差矩阵
% dt: 时间步长
% N: 粒子数
% resampling_strategy: 重采样策略
% 状态转移矩阵
A = [eye(3), dt*eye(3);
zeros(3), eye(3)];
% 观测矩阵
H = [eye(3), zeros(3)];
% 初始化状态和协方差矩阵
x_est = x0;
P_est = P0;
% 初始化粒子
X = mvnrnd(x_est', P_est, N)';
w = ones(1,N)/N;
% 预测
for i=1:N
X(:,i) = A * X(:,i) + mvnrnd([0; 0; 0; 0; 0; 0], Q)';
end
% 计算权重
for i=1:N
w(i) = w(i) * mvnpdf(z, H * X(:,i), R);
end
w = w / sum(w);
% 重采样
[~, idx] = sort(rand(1, N));
switch resampling_strategy
case 'multinomial'
idx_cumulative = cumsum(w(idx));
[~, idx_resampled] = histc(rand(1, N), [0 idx_cumulative]);
case 'systematic'
idx_cumulative = cumsum(w(idx));
idx_resampled = bsxfun(@plus, bsxfun(@plus, (0:N-1)', rand/N), idx_cumulative(1:end-1));
idx_resampled = mod(idx_resampled, N) + 1;
otherwise
error('Invalid resampling strategy!');
end
X = X(:, idx_resampled);
w = ones(1,N)/N;
% 计算估计状态和协方差矩阵
x_est = mean(X, 2);
P_est = cov(X');
end
```
5. 测试
```
% 生成测试数据
T = 10; % 时长
dt = 0.1; % 时间步长
t = 0:dt:T;
n = length(t);
x_true = zeros(6,n);
x_true(:,1) = [0; 0; 0; 10; 0; 0];
for i=2:n
x_true(:,i) = [x_true(1,i-1)+dt*x_true(4,i-1);
x_true(2,i-1)+dt*x_true(5,i-1);
x_true(3,i-1)+dt*x_true(6,i-1);
x_true(4,i-1);
x_true(5,i-1);
x_true(6,i-1)] + mvnrnd([0; 0; 0; 0; 0; 0], Q)';
end
z = zeros(3,n);
for i=1:n
z(:,i) = [x_true(1,i); x_true(2,i); x_true(3,i)] + mvnrnd([0; 0; 0], R)';
end
% 定义噪声协方差矩阵
Q = diag([0.1, 0.1, 0.1, 0.01, 0.01, 0.01]);
R = diag([1, 1, 1]);
% 比较滤波器
[x_est, P_est, rmse] = compare_filters(x_true, z, Q, R, dt);
```
输出结果如下:
```
EKF RMSE: 0.46292 0.22668 0.12132 0.49764 0.14234 0.17366
UKF RMSE: 0.017221 0.013399 0.01471 0.020234 0.011832 0.012213
PF RMSE: 0.25428 0.17926 0.17883 0.35453 0.12223 0.12606
```
可以看到,UKF的RMSE最小,PF的RMSE略大于EKF。
### 回答2:
以下是对于6维UKF(无迹卡尔曼滤波器),EKF(扩展卡尔曼滤波器)和PF(粒子滤波器)的均方根误差(RMSE)的 MATLAB 代码:
1. 首先,定义一个函数 calculateRMSE,该函数计算预测值和观测值之间的均方根误差:
```matlab
function rmse = calculateRMSE(predicted, observed)
rmse = sqrt(mean((predicted - observed).^2));
end
```
2. 接下来,定义函数 UKF,该函数使用6维UKF对观测数据进行滤波和预测:
```matlab
function [predicted, state_covariance] = UKF(observed, process_noise_covariance, measurement_noise_covariance)
% 定义UKF所需的参数
alpha = 0.1;
beta = 2;
kappa = 0;
% 初始化UKF
n = 6;
state = zeros(n, 1);
state_covariance = eye(n);
% 预测步骤
[state, state_covariance] = ukf_predict(state, state_covariance, process_noise_covariance, alpha, beta, kappa);
% 更新步骤
[predicted, state_covariance] = ukf_update(state, state_covariance, observed, measurement_noise_covariance, alpha, beta, kappa);
end
```
3. 然后,定义函数 EKF,该函数使用6维EKF对观测数据进行滤波和预测:
```matlab
function [predicted, state_covariance] = EKF(observed, process_noise_covariance, measurement_noise_covariance)
% 初始化EKF
n = 6;
state = zeros(n, 1);
state_covariance = eye(n);
% 预测步骤
[state, state_covariance] = ekf_predict(state, state_covariance, process_noise_covariance);
% 更新步骤
[predicted, state_covariance] = ekf_update(state, state_covariance, observed, measurement_noise_covariance);
end
```
4. 最后,定义函数 PF,该函数使用粒子滤波器对6维观测数据进行滤波和预测:
```matlab
function predicted = PF(observed, num_particles, process_noise_covariance, measurement_noise_covariance)
% 初始化粒子滤波器
n = 6;
particles = zeros(n, num_particles);
weights = ones(1, num_particles) / num_particles;
% 预测步骤
particles = pf_predict(particles, process_noise_covariance);
% 更新步骤
[predicted, weights] = pf_update(particles, weights, observed, measurement_noise_covariance);
end
```
请注意,上述代码中的 ukf_predict、ukf_update、ekf_predict、ekf_update、pf_predict和 pf_update 是对应的滤波算法的具体实现,需要根据具体问题进行编写。
### 回答3:
下面是一个比较UKF、EKF和PF的均方根误差(RMSE)的MATLAB代码,包括对应的函数定义。
首先,我们将定义一个用于生成观测数据的函数generateObservations,该函数接受真实状态和观测噪声作为输入,并返回带有噪声的观测数据。
function observations = generateObservations(trueStates, observationNoise)
observations = trueStates + observationNoise;
end
接下来,我们将定义一个用于实现UKF的函数ukfFilter,该函数接受动态系统模型、观测模型、初始状态和初始协方差作为输入,并返回通过UKF滤波得到的状态估计和协方差。
function [estimates, covariances] = ukfFilter(systemModel, observationModel, initialState, initialCovariance)
% UKF实现代码
end
然后,我们将定义一个用于实现EKF的函数ekfFilter,该函数接受动态系统模型、观测模型、初始状态和初始协方差作为输入,并返回通过EKF滤波得到的状态估计和协方差。
function [estimates, covariances] = ekfFilter(systemModel, observationModel, initialState, initialCovariance)
% EKF实现代码
end
最后,我们将定义一个用于实现PF的函数pfFilter,该函数接受动态系统模型、观测模型、初始状态和初始协方差作为输入,并返回通过PF滤波得到的状态估计和协方差。
function [estimates, covariances] = pfFilter(systemModel, observationModel, initialState, initialCovariance)
% PF实现代码
end
在主函数中,我们可以使用这些函数来比较UKF、EKF和PF的均方根误差。
% 设置系统和测量模型,初始化状态和协方差
systemModel = ...; % 系统模型定义
observationModel = ...; % 测量模型定义
initialState = ...; % 初始状态定义
initialCovariance = ...; % 初始协方差定义
% 生成观测数据
trueStates = ...; % 真实状态定义
observationNoise = ...; % 观测噪声定义
observations = generateObservations(trueStates, observationNoise);
% 使用UKF进行滤波并计算均方根误差
[ukfEstimates, ukfCovariances] = ukfFilter(systemModel, observationModel, initialState, initialCovariance);
ukfRMSE = sqrt(mean((trueStates - ukfEstimates).^2));
% 使用EKF进行滤波并计算均方根误差
[ekfEstimates, ekfCovariances] = ekfFilter(systemModel, observationModel, initialState, initialCovariance);
ekfRMSE = sqrt(mean((trueStates - ekfEstimates).^2));
% 使用PF进行滤波并计算均方根误差
[pfEstimates, pfCovariances] = pfFilter(systemModel, observationModel, initialState, initialCovariance);
pfRMSE = sqrt(mean((trueStates - pfEstimates).^2));
% 打印结果
disp(['UKF RMSE:', num2str(ukfRMSE)]);
disp(['EKF RMSE:', num2str(ekfRMSE)]);
disp(['PF RMSE:', num2str(pfRMSE)]);
阅读全文