xml文件转化成yolov5的txt
时间: 2023-07-30 12:09:58 浏览: 173
您可以使用以下步骤将XML文件转换为Yolov5的txt格式:
1. 首先,需要安装并配置好Python环境。
2. 使用Python的xml.etree.ElementTree库来解析XML文件。您可以使用以下代码示例:
```python
import xml.etree.ElementTree as ET
def parse_xml(xml_path):
tree = ET.parse(xml_path)
root = tree.getroot()
annotations = []
for obj in root.findall('object'):
name = obj.find('name').text
xmin = int(obj.find('bndbox/xmin').text)
ymin = int(obj.find('bndbox/ymin').text)
xmax = int(obj.find('bndbox/xmax').text)
ymax = int(obj.find('bndbox/ymax').text)
annotations.append((name, xmin, ymin, xmax, ymax))
return annotations
```
此函数将返回一个包含每个对象的名称和边界框坐标的列表。
3. 使用上面定义的函数解析XML文件,并将结果保存到一个列表中。假设您有一个名为`annotations`的列表。
```python
annotations = parse_xml('path/to/your/xml/file.xml')
```
4. 将对象的名称和边界框坐标写入Yolov5的txt文件中。每个对象的标签应该以以下格式写入:
```
<class_label> <x_center> <y_center> <width> <height>
```
其中,`<class_label>`是对象的类别标签,`<x_center>`和`<y_center>`是边界框中心点的相对坐标(相对于图像的宽度和高度),`<width>`和`<height>`是边界框的宽度和高度的相对值(相对于图像的宽度和高度)。
以下是将结果写入txt文件的示例代码:
```python
def write_txt(annotations, txt_path):
with open(txt_path, 'w') as f:
for annotation in annotations:
class_label, xmin, ymin, xmax, ymax = annotation
x_center = (xmin + xmax) / 2
y_center = (ymin + ymax) / 2
width = xmax - xmin
height = ymax - ymin
f.write(f"{class_label} {x_center} {y_center} {width} {height}\n")
```
使用上面定义的函数将结果写入txt文件:
```python
write_txt(annotations, 'path/to/your/txt/file.txt')
```
将`'path/to/your/xml/file.xml'`替换为您的XML文件路径,将`'path/to/your/txt/file.txt'`替换为您想要保存txt文件的路径。
完成以上步骤后,您将获得一个包含对象标签的Yolov5格式的txt文件。
阅读全文
相关推荐

















