swin transformer中的path是什么
时间: 2024-01-08 22:56:59 浏览: 116
在Swin Transformer中,`path`是一个参数,用于指定Transformer模型中跨图块连接的路径。这个参数控制了在不同的层之间如何共享信息,以及模型的计算效率。`path`的取值通常是一个整数,代表跨越的图块数量。例如,如果`path=2`,那么第1个图块将连接到第3个图块,第2个图块将连接到第4个图块,以此类推。这种跨越图块的连接方式可以帮助模型更好地捕获输入序列中的长距离依赖关系。
相关问题
swin transformer中如何加入cbam注意力机制
在 Swin Transformer 中加入 CBAM(Convolutional Block Attention Module)注意力机制,可以通过以下步骤实现:
1. 导入必要的库和模块:
```python
import torch
import torch.nn as nn
```
2. 定义 CBAM 模块:
```python
class CBAM(nn.Module):
def __init__(self, channel, reduction=16):
super(CBAM, self).__init__()
self.channel = channel
self.reduction = reduction
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(self.channel, self.channel // self.reduction, kernel_size=1, stride=1, padding=0)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(self.channel // self.reduction, self.channel, kernel_size=1, stride=1, padding=0)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.avg_pool(x)
max_out = self.max_pool(x)
avg_out = self.fc1(avg_out)
avg_out = self.relu(avg_out)
avg_out = self.fc2(avg_out)
max_out = self.fc1(max_out)
max_out = self.relu(max_out)
max_out = self.fc2(max_out)
out = avg_out + max_out
out = self.sigmoid(out)
out = out.expand_as(x)
return out * x
```
3. 在 Swin Transformer 的基础上,在每个阶段的每个块之后添加 CBAM 模块:
```python
class SwinBlock(nn.Module):
def __init__(self, dim, num_heads, window_size, shift_size, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(
dim, num_heads=num_heads, window_size=window_size, shift_size=shift_size,
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop
)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
# 添加 CBAM 注意力机制
self.cbam = CBAM(dim)
def forward(self, x, mask_matrix):
x = x + self.drop_path(self.attn(self.norm1(x), mask_matrix))
x = x + self.drop_path(self.mlp(self.norm2(x)))
x = self.cbam(x) # 应用 CBAM 注意力机制
return x
```
通过以上步骤,你就可以在 Swin Transformer 中成功加入 CBAM 注意力机制。当然,这只是一个示例实现,你可以根据具体需求进行修改和优化。
在swin transformer biock中添加adapter
在 Swin Transformer 中添加 Adapter 的过程如下:
1. 定义 Adapter
定义一个 Adapter 类,该类包含输入和输出的维度大小以及 Adapter 的前向计算逻辑。例如,一个简单的 Adapter 可以定义如下:
```python
import torch.nn as nn
class Adapter(nn.Module):
def __init__(self, input_dim, output_dim):
super(Adapter, self).__init__()
self.fc = nn.Sequential(
nn.Linear(input_dim, output_dim),
nn.ReLU(inplace=True),
nn.Linear(output_dim, output_dim),
)
def forward(self, x):
return self.fc(x)
```
在这个例子中,我们定义了一个包含两个线性层和一个 ReLU 激活函数的简单的 Adapter。输入和输出的维度大小分别由 `input_dim` 和 `output_dim` 参数指定。
2. 添加 Adapter 到 Swin Transformer Block
在 Swin Transformer Block 的构造函数中,我们可以添加 Adapter。例如,下面是一个包含 Adapter 的基本 Swin Transformer Block:
```python
import torch.nn as nn
class SwinTransformerBlock(nn.Module):
def __init__(self, dim, num_heads, window_size, shift_size, mlp_ratio, qkv_bias=False, qk_scale=None, drop=0.,
attn_drop=0., drop_path=0., norm_layer=None, input_dim=None, output_dim=None):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), out_features=dim, act_layer=nn.GELU,
drop=drop)
# Add adapter
if input_dim is not None and output_dim is not None:
self.adapter = Adapter(input_dim=input_dim, output_dim=output_dim)
else:
self.adapter = None
def forward(self, x):
if self.adapter is not None:
x = x + self.adapter(x)
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
```
在这个例子中,我们通过 `input_dim` 和 `output_dim` 参数指定了 Adapter 的输入和输出维度大小。在 `forward` 方法中,我们首先应用 Adapter,然后应用注意力机制和 MLP。
3. 多个 Adapter 的情况
如果我们需要添加多个 Adapter,我们可以为每个 Adapter 定义不同的输入和输出维度大小,并将它们添加到 Swin Transformer Block 中。例如,下面是一个包含两个 Adapter 的 Swin Transformer Block:
```python
import torch.nn as nn
class SwinTransformerBlock(nn.Module):
def __init__(self, dim, num_heads, window_size, shift_size, mlp_ratio, qkv_bias=False, qk_scale=None, drop=0.,
attn_drop=0., drop_path=0., norm_layer=None, input_dims=None, output_dims=None):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), out_features=dim, act_layer=nn.GELU,
drop=drop)
# Add adapters
self.adapters = nn.ModuleList()
if input_dims is not None and output_dims is not None:
for input_dim, output_dim in zip(input_dims, output_dims):
self.adapters.append(Adapter(input_dim=input_dim, output_dim=output_dim))
def forward(self, x):
for adapter in self.adapters:
x = x + adapter(x)
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
```
在这个例子中,我们使用列表 `input_dims` 和 `output_dims` 指定每个 Adapter 的输入和输出的维度大小,并将它们添加到 `nn.ModuleList()` 中。在 `forward` 方法中,我们首先应用所有的 Adapter,然后应用注意力机制和 MLP。
阅读全文