knn python算法
时间: 2024-05-17 21:09:36 浏览: 156
KNN算法是一种常用的分类和回归方法,其全称为K-Nearest Neighbor,即K近邻算法。它的基本思想是在数据集中找到与新数据最接近的K个样本,然后将新数据归为K个样本中出现次数最多的类别(或平均值)。
在Python中,我们可以使用Scikit-learn库来实现KNN算法。具体步骤如下:
1.导入库和数据集
```python
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=0)
```
2.建立模型并训练
```python
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
```
3.预测并评估模型
```python
print("测试集精度: {:.2f}".format(knn.score(X_test, y_test)))
```
相关问题
python分类算法_用Python实现KNN分类算法
好的,下面是用 Python 实现 KNN 分类算法的步骤:
1. 导入必要的库
```python
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
```
2. 加载数据集
```python
data = pd.read_csv('data.csv')
```
3. 数据预处理
```python
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
```
4. 训练模型
```python
k = 5 # 取 k=5
classifier = KNeighborsClassifier(n_neighbors=k)
classifier.fit(X_train, y_train)
```
5. 预测结果
```python
y_pred = classifier.predict(X_test)
```
6. 计算准确率
```python
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
```
以上是用 Python 实现 KNN 分类算法的基本步骤,具体实现可以根据实际情况进行调整和优化。
knn回归算法python代码
可以如下实现:
``` python
from sklearn.neighbors import KNeighborsRegressor
# 训练集数据和标签
X_train = [[0, 0], [1, 1], [2, 2], [3, 3]]
y_train = [0, 1, 2, 3]
# 创建模型
knn = KNeighborsRegressor(n_neighbors=2)
# 拟合模型
knn.fit(X_train, y_train)
# 预测
X_test = [[0.5, 0.5], [2.5, 2.5]]
y_pred = knn.predict(X_test)
print('预测值:', y_pred)
```
希望对您有帮助。
阅读全文