这串代码是什么意思self.features = torch.nn.Sequential( torch.nn.Conv1d(in_channels,64,kernel_size=7,stride=2,padding=3), torch.nn.MaxPool1d(3,2,1), Bottlrneck(64,64,256,False), Bottlrneck(256,64,256,False), Bottlrneck(256,64,256,False), torch.nn.Dropout(0.1), # 添加Dropout层 Bottlrneck(256,128,512, True), Bottlrneck(512,128,512, False), Bottlrneck(512,128,512, False), Bottlrneck(512,128,512, False), torch.nn.Dropout(0.1), # 添加Dropout层 Bottlrneck(512,256,1024, True), Bottlrneck(1024,256,1024, False), Bottlrneck(1024,256,1024, False), Bottlrneck(1024,256,1024, False), Bottlrneck(1024,256,1024, False), Bottlrneck(1024,256,1024, False), torch.nn.Dropout(0.1), # 添加Dropout层 Bottlrneck(1024,512,2048, True), Bottlrneck(2048,512,2048, False), Bottlrneck(2048,512,2048, False), torch.nn.AdaptiveAvgPool1d(1) )
时间: 2024-04-28 07:19:13 浏览: 228
这段代码定义了一个 Sequential 容器,其中包含了多个卷积层和残差块。具体来说,它包括:
1. 一个 1D 卷积层,输入通道数为 in_channels,输出通道数为 64,卷积核大小为 7,步长为 2,padding 为 3。
2. 一个 1D 最大池化层,池化核大小为 3,步长为 2,padding 为 1。
3. 三个 Bottleneck 残差块,分别输入 64 个通道,输出 256 个通道,其中第一个残差块不进行下采样。每个残差块包含三个卷积层,分别使用了 1x1、3x3 和 1x1 的卷积核。
4. 一个 Dropout 层,丢弃概率为 0.1。
5. 四个 Bottleneck 残差块,分别输入 256 个通道,输出 512 个通道,其中第一个残差块进行下采样。每个残差块包含三个卷积层,分别使用了 1x1、3x3 和 1x1 的卷积核。
6. 一个 Dropout 层,丢弃概率为 0.1。
7. 五个 Bottleneck 残差块,分别输入 512 个通道,输出 2048 个通道,其中第一个残差块进行下采样。每个残差块包含三个卷积层,分别使用了 1x1、3x3 和 1x1 的卷积核。
8. 一个自适应平均池化层,将输出大小调整为 (batch_size, 2048, 1)。
这些层的组合构成了一个 ResNet50 模型,用于音频信号分类任务。
相关问题
features_list = list(vgg19.features.children()) self.conv2_2 = torch.nn.Sequential(*features_list[:13]) self.conv3_4 = torch.nn.Sequential(*features_list[13:26]) self.conv4_4 = torch.nn.Sequential(*features_list[26: 39]) self.conv5_4 = torch.nn.Sequential(*features_list[39:-1]) self.tail_layer = features_list[-1] self.fc_layers = list(vgg19.classifier.children())[:-2] self.fc_layers = torch.nn.Sequential(*list(self.fc_layers)) self.extract_0 = torch.nn.Sequential( torch.nn.MaxPool2d(kernel_size=8, stride=8), torch.nn.Conv2d(128, self.k, kernel_size=1, stride=1) ) self.extract_1 = torch.nn.Sequential( torch.nn.MaxPool2d(kernel_size=4, stride=4), torch.nn.Conv2d(256, self.k, kernel_size=1, stride=1) )self.extract_2 = torch.nn.Sequential( torch.nn.MaxPool2d(kernel_size=2, stride=2), torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1) ) self.extract_3 = torch.nn.Sequential( torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1) ) self.fc0 = torch.nn.Linear(196, 1, bias=True) self.fc1 = torch.nn.Linear(196, 1, bias=True) self.fc2 = torch.nn.Linear(196, 1, bias=True) self.fc3 = torch.nn.Linear(196, 1, bias=True) self.fc4 = torch.nn.Linear(4096, 2 * k, bias=True) self.bn1 = torch.nn.BatchNorm1d(k) self.bn2 = torch.nn.BatchNorm1d(k) weight_init(self.fc0, self.fc1, self.fc2, self.fc3, self.fc4)
这段代码定义了一个名为 VGG19Encoder 的神经网络模型。它使用了预训练的 VGG19 模型的前四个卷积层和最后一个全连接层作为特征提取器,其中前四个卷积层被分别用于提取不同层级的特征。然后,通过几个额外的卷积层和全连接层将提取的特征转换为对输入图像中物体类别的预测。其中,提取的特征被分别送入四个全连接层中进行分类。
具体来说,代码中的各个部分的功能如下:
- `features_list = list(vgg19.features.children())`:获取 VGG19 模型的所有卷积层。
- `self.conv2_2 = torch.nn.Sequential(*features_list[:13])`:将前 13 层卷积层作为 conv2_2 层。
- `self.conv3_4 = torch.nn.Sequential(*features_list[13:26])`:将第 14 层到第 26 层卷积层作为 conv3_4 层。
- `self.conv4_4 = torch.nn.Sequential(*features_list[26: 39])`:将第 27 层到第 39 层卷积层作为 conv4_4 层。
- `self.conv5_4 = torch.nn.Sequential(*features_list[39:-1])`:将第 40 层到倒数第二层卷积层作为 conv5_4 层。
- `self.tail_layer = features_list[-1]`:将最后一层卷积层作为尾部层。
- `self.fc_layers = list(vgg19.classifier.children())[:-2]`:获取 VGG19 模型的所有全连接层,但不包括最后两层。
- `self.fc_layers = torch.nn.Sequential(*list(self.fc_layers))`:将所有全连接层组成一个新的连续的全连接层。
- `self.extract_0 = torch.nn.Sequential(torch.nn.MaxPool2d(kernel_size=8, stride=8), torch.nn.Conv2d(128, self.k, kernel_size=1, stride=1))`:将 conv2_2 层的输出进行最大池化和卷积操作,以提取更高级别的特征。
- `self.extract_1 = torch.nn.Sequential(torch.nn.MaxPool2d(kernel_size=4, stride=4), torch.nn.Conv2d(256, self.k, kernel_size=1, stride=1))`:将 conv3_4 层的输出进行最大池化和卷积操作,以提取更高级别的特征。
- `self.extract_2 = torch.nn.Sequential(torch.nn.MaxPool2d(kernel_size=2, stride=2), torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1))`:将 conv4_4 层的输出进行最大池化和卷积操作,以提取更高级别的特征。
- `self.extract_3 = torch.nn.Sequential(torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1))`:将 conv5_4 层的输出进行卷积操作,以提取更高级别的特征。
- `self.fc0 = torch.nn.Linear(196, 1, bias=True)`:定义一个输入为 196 的全连接层,用于分类。
- `self.fc1 = torch.nn.Linear(196, 1, bias=True)`:定义第二个输入为 196 的全连接层,用于分类。
- `self.fc2 = torch.nn.Linear(196, 1, bias=True)`:定义第三个输入为 196 的全连接层,用于分类。
- `self.fc3 = torch.nn.Linear(196, 1, bias=True)`:定义第四个输入为 196 的全连接层,用于分类。
- `self.fc4 = torch.nn.Linear(4096, 2 * k, bias=True)`:定义一个输入为 4096 的全连接层,用于分类。
- `self.bn1 = torch.nn.BatchNorm1d(k)`:定义一个 Batch Normalization 层,用于归一化数据。
- `self.bn2 = torch.nn.BatchNorm1d(k)`:定义第二个 Batch Normalization 层,用于归一化数据。
- `weight_init(self.fc0, self.fc1, self.fc2, self.fc3, self.fc4)`:对所有全连接层进行权重初始化,以提高模型的性能。
解释代码class LeNet(torch.nn.Module): def __init__(self, input_channels, input_sample_points, classes): super(LeNet, self).__init__() self.input_channels = input_channels self.input_sample_points = input_sample_points self.features = torch.nn.Sequential( torch.nn.Conv1d(input_channels, 20, kernel_size=1), torch.nn.BatchNorm1d(20), torch.nn.MaxPool1d(2), torch.nn.Conv1d(20, 50, kernel_size=1), torch.nn.BatchNorm1d(50), torch.nn.MaxPool1d(2), ) self.After_features_channels = 50 self.After_features_sample_points = 1#原来为1,数据修改后改为2否则维度不匹配 self.classifier = torch.nn.Sequential( torch.nn.Linear(self.After_features_channels * self.After_features_sample_points, 512), torch.nn.ReLU(), torch.nn.Linear(512, classes), torch.nn.ReLU() ) def forward(self, x): # 检查输入样本维度是否有错误 if x.size(1) != self.input_channels or x.size(2) != self.input_sample_points: raise Exception( '输入数据维度错误,输入维度应为[Batch_size,{},{}],实际输入维度为{}'.format(self.input_channels, self.input_sample_points,x.size()) ) x = self.features(x) x = x.view(-1, self.After_features_channels * self.After_features_sample_points) x = self.classifier(x) return x
这段代码定义了一个名为LeNet的LeNet-5模型的类。它继承了PyTorch中的nn.Module类,表示它是一个神经网络模型。
在__init__()方法中,输入参数包括输入数据的通道数(input_channels)、采样点数(input_sample_points)和类别数(classes)。在初始化方法中,首先调用父类nn.Module的构造函数,然后定义了LeNet-5的前向传播过程。
其中,特征提取部分采用了两个卷积层和池化层,采用了1D卷积和maxpooling。首先是一个输入通道数为input_channels,输出通道数为20,卷积核大小为1的卷积层,然后进行批量归一化,再进行maxpooling。随后又是一个输入通道数为20,输出通道数为50,卷积核大小为1的卷积层,然后进行批量归一化,再进行maxpooling。
之后是分类器部分,采用了两个全连接层。首先将特征图展开为一维向量,然后通过一个线性层将其映射到512维,接着通过ReLU激活函数,再通过另一个线性层将其映射到最终的类别数,最后再通过ReLU激活函数输出结果。
在forward()方法中,首先检查输入数据的维度是否符合要求,然后将数据通过特征提取部分和分类器部分依次进行前向传播,并输出最终结果。
阅读全文