data = np.array(data).reshape(N*Y,12,2),将采集的数据进行上面的格式转换,用于算法训练window_size_frame = 12 window_size_col = 2 ,是否与这个有关
时间: 2024-04-20 18:26:00 浏览: 91
是的,上述的代码将采集的数据进行了格式转换,以适应算法的训练。其中,window_size_frame = 12表示每个样本的时间窗口大小为12帧,window_size_col = 2表示每个帧中包含2列的数据。
通过reshape操作,将采集的数据重新组织为N*Y行,12列,每个元素是一个2维数组的形式。这样做的目的是为了将每个样本的时间窗口数据整合在一起,并且保留了每个时间窗口中的12帧数据和每帧中的2列数据。
这样处理后的数据可以用于训练算法,使算法能够利用时间窗口中的相关信息进行学习和预测。
相关问题
import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model import pandas as pd from sklearn import preprocessing def data_input(): data=pd.read_excel('22AI1.xlsx') data=data.dropna(axis=0) data = data.reset_index(drop=True) X=data.身高 Y=data.体重 X=np.array(X).reshape(-1,1) Y=np.array(Y).reshape(-1,1) return X,Y X,Y=data_input()[0],data_input()[1] clf=linear_model.LinearRegression() clf.fit(X,Y) X2=np.array([[160],[165],[170]]) Y2=clf.predict(X2) res=clf.predict(np.array(190).reshape(-1,1))[0] print('预测身高190的学生体重为:{:.2f}'.format(res[0])) # 画图部分 plt.plot(X,Y,'ks') plt.plot(X2,Y2,'g-') plt.show()我的代码如上,请再次给出解决办法
根据您提供的代码,您想要预测身高为190的学生体重,并且画出身高和体重之间的回归线。
您的代码中已经使用了sklearn库的线性回归模型来拟合身高和体重之间的关系,并且使用predict()方法来预测身高为190的学生体重。但是,在预测身高为190的学生体重之前,您需要对身高数据进行标准化处理,以提高模型的准确性。
以下是修改后的代码,其中使用了sklearn库中的preprocessing模块来进行身高数据的标准化处理:
```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model
import pandas as pd
from sklearn import preprocessing
def data_input():
data=pd.read_excel('22AI1.xlsx')
data=data.dropna(axis=0)
data = data.reset_index(drop=True)
X=data.身高
Y=data.体重
X=np.array(X).reshape(-1,1)
Y=np.array(Y).reshape(-1,1)
return X, Y
# 标准化身高数据
X = preprocessing.scale(data_input()[0])
Y=data_input()[1]
clf=linear_model.LinearRegression()
clf.fit(X,Y)
# 标准化待预测的身高数据
X2 = preprocessing.scale(np.array([[160],[165],[170],[190]]))
Y2=clf.predict(X2)
res=Y2[-1][0] # 取出预测结果中身高为190的学生体重
print('预测身高190的学生体重为:{:.2f}'.format(res))
# 画图部分
plt.plot(X,Y,'ks')
plt.plot(X2,Y2,'g-')
plt.show()
```
在这个修改后的代码中,我们首先使用了preprocessing.scale()方法对原始的身高数据进行了标准化处理,使其具有相同的尺度。然后,我们将标准化后的身高数据用于训练线性回归模型,并使用predict()方法来预测身高为190的学生体重。最后,我们从预测结果中取出身高为190的学生体重,并使用format()方法将结果打印出来。
在画图部分,我们将标准化后的身高数据和原始的体重数据用于绘制散点图,将标准化后的身高数据和预测结果用于绘制回归线。
digits = cv2.imread('digits.png', 0) rows, cols = np.hsplit(digits, 100) cells = [np.hsplit(row, 50) for row in rows] train_data = np.array(cells).reshape(-1, 400).astype(np.float32) train_labels = np.repeat(np.arange(10), len(train_data) / 10)
这段代码看起来是在做什么?
它是在加载一个包含数字图像的 png 文件,并将每个数字图像分别分割为 50x20 个小单元格。然后,这些小单元格被重新排列成一个数组,其中每个数字被转换为一个 400 维的特征向量,用于训练机器学习模型。每个数字的标签随后被重复多次,并用于训练模型的分类任务。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044736.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)