import numpy as np import math import tensorflow as tf import matplotlib.pyplot as plt # 生成数据 dataset = [] for data in np.arange(0, 3, .01): data = math.sin(data * math.pi) dataset.append(data) dataset = np.array(dataset) dataset = dataset.astype('float32') max_value = np.max(dataset) min_value = np.min(dataset) scalar = max_value - min_value dataset = list(map(lambda x: x / scalar, dataset)) # 创建数据集 look_back = 5 trainX, trainY = [], [] for i in range(len(dataset) - look_back): trainX.append(dataset[i:i+look_back]) trainY.append(dataset[i+look_back]) trainX = np.array(trainX) trainY = np.array(trainY) # 转换为张量 trainX = tf.convert_to_tensor(trainX) trainY = tf.convert_to_tensor(trainY) # 定义模型 model = tf.keras.Sequential([ tf.keras.layers.SimpleRNN(32, input_shape=(look_back, 1)), tf.keras.layers.Dense(1) ]) # 编译模型 model.compile(optimizer=tf.keras.optimizers.Adam(), loss=tf.keras.losses.MeanSquaredError()) # 训练模型 history = model.fit(trainX, trainY, epochs=100, batch_size=16, verbose=2) # 预测结果 predicted = [] for i in range(len(dataset) - look_back): x = np.array(dataset[i:i+look_back]) x = np.reshape(x, (1, look_back, 1)) y = model.predict(x) predicted.append(y[0][0]) # 反归一化 predicted = np.array(predicted) predicted = predicted * scalar # 绘图 plt.plot(dataset[look_back:], label='True Data') plt.plot(predicted, label='Predicted Data') plt.legend() plt.show()生成的真实值只有一半大小
时间: 2024-03-19 12:41:57 浏览: 118
根据您提供的代码,我猜测您可能是在对预测结果进行反归一化时出现了问题。在代码中,您将预测结果乘以了一个名为scalar的标量值,但是scalar的计算方式并没有给出。如果scalar的计算方式不正确,可能导致反归一化后的预测结果不准确。
另外,您在代码中没有给出任何关于预测结果大小的具体描述。如果您说生成的真实值只有一半大小,可能需要更多上下文信息才能理解您的意思。
相关问题
import wfdb import numpy as np import matplotlib.pyplot as plt from scipy import signal # 读取心电数据 record = wfdb.rdrecord('D:/下载/ptb-xl-a-large-publicly-available-electrocardiography-dataset-1.0.3/records100/00000/00003_lr') # 获取心电信号 ecg_signal = record.p_signal[:, 0] # 获取采样频率 fs = record.fs # 获取时间轴 t = np.arange(ecg_signal.size) / fs # 去除基线漂移 ecg_detrend = signal.detrend(ecg_signal) # 定义滤波器 b, a = signal.butter(4, 0.2, 'low') # 进行滤波 ecg_filt = signal.filtfilt(b, a, ecg_detrend)请问用的是什么滤波方法
这段代码使用的是双向无延迟滤波器(即 `filtfilt` 函数),对信号进行了低通滤波,截止频率为 0.2 * fs,滤波器阶数为 4。由于 `filtfilt` 函数是双向滤波,因此可以消除滤波器引入的相位延迟,保持信号的相位不变。这种滤波方法可以更好地保留信号的高频成分和细节信息,同时去除低频噪声和基线漂移。
import numpy as npimport pandas as pdimport matplotlib.pyplot as pltfrom sklearn.preprocessing import MinMaxScalerfrom keras.models import Sequentialfrom keras.layers import Dense, LSTM# 读取数据dataset = pd.read_csv('wind_speed.csv', header=0, index_col=0)dataset.index = pd.to_datetime(dataset.index)dataset = dataset.resample('H').mean()# 数据预处理scaler = MinMaxScaler(feature_range=(0, 1))dataset_scaled = scaler.fit_transform(dataset)# 创建训练集和测试集train_size = int(len(dataset_scaled) * 0.8)test_size = len(dataset_scaled) - train_sizetrain, test = dataset_scaled[0:train_size, :], dataset_scaled[train_size:len(dataset_scaled), :]# 创建数据集def create_dataset(dataset, look_back): dataX, dataY = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back), 0] dataX.append(a) dataY.append(dataset[i + look_back, 0]) return np.array(dataX), np.array(dataY)look_back = 24trainX, trainY = create_dataset(train, look_back)testX, testY = create_dataset(test, look_back)# 调整数据维度trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1))# 创建LSTM模型model = Sequential()model.add(LSTM(50, input_shape=(look_back, 1)))model.add(Dense(1))model.compile(loss='mean_squared_error', optimizer='adam')model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)# 预测数据trainPredict = model.predict(trainX)testPredict = model.predict(testX)# 反转数据缩放trainPredict = scaler.inverse_transform(trainPredict)trainY = scaler.inverse_transform([trainY])testPredict = scaler.inverse_transform(testPredict)testY = scaler.inverse_transform([testY])# 绘制预测结果plt.plot(trainY[0], label='Train Data')plt.plot(trainPredict[:,0], label='Predicted Train Data')plt.plot(testY[0], label='Test Data')plt.plot(testPredict[:,0], label='Predicted Test Data')plt.legend(loc='best')plt.show()
这段代码是使用 LSTM 模型对风速数据进行预测的代码。具体来说,代码中使用了 Pandas 库读取风速数据,并进行了预处理和归一化。然后将数据集划分为训练集和测试集,并创建了一个函数 create_dataset 来生成数据集。接着,使用 Keras 库建立 LSTM 模型,并使用训练集对其进行训练。最后,使用训练好的模型对训练集和测试集进行预测,并将预测结果进行可视化。
阅读全文