# 加载数据集 dataset = ImageFolder("D:/wjd/2", transform=transform) dataloader = DataLoader(dataset, batch_size=32, shuffle=True) # 提取特征向量 features = [] with torch.no_grad(): for images, _ in dataloader: outputs = model(images) features.append(outputs) features = torch.cat(features, dim=0) features = features.numpy() from sklearn.cluster import DBSCAN # 使用DBSCAN算法进行聚类 dbscan = DBSCAN(eps=0.5, min_samples=5, metric='euclidean') labels = dbscan.fit_predict(features) import matplotlib.pyplot as plt # 将聚类结果可视化 plt.scatter(features[:, 0], features[:, 1], c=labels) plt.show() save_path = "D:/jk" if not os.path.exists(save_path): os.mkdir(save_path) # 将每个聚类结果单独保存到对应的文件夹中 for i in set(labels): class_path = os.path.join(save_path, str(i)) if not os.path.exists(class_path): os.mkdir(class_path) for j in range(len(labels)): if labels[j] == i: img_path = dataset.imgs[j][0] img_name = os.path.basename(img_path) save_name = os.path.join(class_path, img_name) shutil.copy(img_path, save_name),想换成高斯混合模型聚类对数据集进行聚类,然后自动确定聚类数量,因为我也不知道会聚成几类,然后将聚类的结果保存在这个路径D:\jk下
时间: 2024-03-01 08:56:08 浏览: 107
To perform clustering on the dataset using Gaussian Mixture Model (GMM), you can use the `GaussianMixture` class from the `sklearn.mixture` module. Here's an example code snippet:
```
from sklearn.mixture import GaussianMixture
# Load the dataset
dataset = ImageFolder("D:/wjd/2", transform=transform)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
# Extract feature vectors
features = []
with torch.no_grad():
for images, _ in dataloader:
outputs = model(images)
features.append(outputs)
features = torch.cat(features, dim=0)
features = features.numpy()
# Perform clustering using GMM
gmm = GaussianMixture(n_components='auto', covariance_type='full')
labels = gmm.fit_predict(features)
# Visualize the clustering result
plt.scatter(features[:, 0], features[:, 1], c=labels)
plt.show()
# Save the clustering result
save_path = "D:/jk"
if not os.path.exists(save_path):
os.mkdir(save_path)
for i in set(labels):
class_path = os.path.join(save_path, str(i))
if not os.path.exists(class_path):
os.mkdir(class_path)
for j in range(len(labels)):
if labels[j] == i:
img_path = dataset.imgs[j][0]
img_name = os.path.basename(img_path)
save_name = os.path.join(class_path, img_name)
shutil.copy(img_path, save_name)
```
In the code above, `n_components='auto'` is used to automatically determine the number of components in the GMM. You can also specify a fixed number of components by setting `n_components` to an integer value.
阅读全文