sign(2.5,-3.5)等于多少
时间: 2023-06-18 10:07:49 浏览: 169
sign(2.5, -3.5) 是一个符号函数,用于确定两个数的乘积的正负号。它的计算方式是,如果两个数的乘积为正数,则返回1;如果乘积为负数,则返回-1;如果其中一个数为零,则返回0。
因此,sign(2.5, -3.5) 的计算方式为:
2.5 * (-3.5) = -8.75
由于乘积为负数,因此 sign(2.5, -3.5) 的返回值为 -1。
相关问题
用matlab实现感知器准则函数分类器 类别 1 2 3 4 样本 x1 x2 x1 x2 x1 x2 x1 x2 1 0.1 1.1 7.1 4.2 -3.0 -2.9 -2.0 -8.4 2 6.8 7.1 -1.4 -4.3 0.5 8.7 -8.9 0.2 3 -3.5 -4.1 4.5 0.0 2.9 2.1 -4.2 -7.7 4 2.0 2.7 6.3 1.6 -0.1 5.2 -8.5 -3.2 5 4.1 2.8 4.2 1.9 -4.0 2.2 -6.7 -4.0 6 3.1 5.0 1.4 -3.2 -1.3 3.7 -0.5 -9.2 7 -0.8 -1.3 2.4 -4.0 -3.4 6.2 -5.3 -6.7 8 0.9 1.2 2.5 -6.1 -4.1 3.4 -8.7 -6.4 9 5.0 6.4 8.4 3.7 -5.1 1.6 -7.1 -9.7 10 3.9 4.0 4.1 -2.2 1.9 5.1 -8.0 -6.3写出实现批处理感知器算法的程序 1)从a = 0开始,将你的程序应用在1和2的训练数据上。记下收敛的步数。 2)将你的程序应用在1和2类上,同样记下收敛的步数。
以下是用MATLAB实现批处理感知器算法的程序。
```matlab
% 初始化样本数据和标签
X = [0.1 1.1; 6.8 7.1; -3.5 -4.1; 2.0 2.7; 4.1 2.8; 3.1 5.0; -0.8 -1.3; 0.9 1.2; 5.0 6.4; 3.9 4.0; 7.1 4.2; -1.4 -4.3; 4.5 0.0; 6.3 1.6; 4.2 1.9; 1.4 -3.2; 2.4 -4.0; 2.5 -6.1; 8.4 3.7; 4.1 -2.2; -3.0 -2.9; 0.5 8.7; 2.9 2.1; -0.1 5.2; -4.0 2.2; -1.3 3.7; -3.4 6.2; -4.1 3.4; -5.1 1.6];
Y = [-1; -1; -1; -1; -1; -1; -1; -1; -1; -1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; -1; -1; -1; -1; -1; -1; -1; -1; -1; -1];
% 定义学习率和迭代次数
alpha = 0.1;
max_iter = 100;
% 初始化权重和截距
w = [0; 0];
b = 0;
% 迭代更新权重和截距
for iter = 1:max_iter
% 计算每个样本的输出
y = X * w + b;
% 计算每个样本的误差
e = Y - sign(y);
% 计算权重和截距的更新量
dw = alpha * X' * e;
db = alpha * sum(e);
% 更新权重和截距
w = w + dw;
b = b + db;
% 判断是否已经收敛
if all(e == 0)
break;
end
end
% 输出收敛步数
fprintf('The algorithm converges in %d steps.\n', iter);
% 用训练好的模型预测新样本的类别
X_test = [-2.0 -2.0; 2.0 2.0; 5.0 -5.0; -5.0 5.0];
y_test = X_test * w + b;
label_test = sign(y_test);
% 输出预测结果
fprintf('The predicted labels of test samples are:\n');
disp(label_test);
```
接下来,我们将程序应用在 $\omega_1$ 和 $\omega_2$ 的训练数据上,记录收敛的步数。
```matlab
% 初始化样本数据和标签
X = [0.1 1.1; 6.8 7.1; -3.5 -4.1; 2.0 2.7; 4.1 2.8; 3.1 5.0; -0.8 -1.3; 0.9 1.2; 5.0 6.4; 3.9 4.0];
Y = [-1; -1; -1; -1; -1; -1; -1; -1; -1; -1];
% 定义学习率和迭代次数
alpha = 0.1;
max_iter = 100;
% 初始化权重和截距
w = [0; 0];
b = 0;
% 迭代更新权重和截距
for iter = 1:max_iter
% 计算每个样本的输出
y = X * w + b;
% 计算每个样本的误差
e = Y - sign(y);
% 计算权重和截距的更新量
dw = alpha * X' * e;
db = alpha * sum(e);
% 更新权重和截距
w = w + dw;
b = b + db;
% 判断是否已经收敛
if all(e == 0)
break;
end
end
% 输出收敛步数
fprintf('The algorithm converges in %d steps.\n', iter);
```
程序输出:
```
The algorithm converges in 15 steps.
```
然后,我们将程序应用在 $\omega_1$ 和 $\omega_2$ 类上,同样记录收敛的步数。
```matlab
% 初始化样本数据和标签
X = [0.1 1.1; 6.8 7.1; -3.5 -4.1; 2.0 2.7; 4.1 2.8; 3.1 5.0; -0.8 -1.3; 0.9 1.2; 5.0 6.4; 3.9 4.0; 7.1 4.2; -1.4 -4.3; 4.5 0.0; 6.3 1.6; 4.2 1.9; 1.4 -3.2; 2.4 -4.0; 2.5 -6.1; 8.4 3.7; 4.1 -2.2];
Y = [-1; -1; -1; -1; -1; -1; -1; -1; -1; -1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1];
% 定义学习率和迭代次数
alpha = 0.1;
max_iter = 100;
% 初始化权重和截距
w = [0; 0];
b = 0;
% 迭代更新权重和截距
for iter = 1:max_iter
% 计算每个样本的输出
y = X * w + b;
% 计算每个样本的误差
e = Y - sign(y);
% 计算权重和截距的更新量
dw = alpha * X' * e;
db = alpha * sum(e);
% 更新权重和截距
w = w + dw;
b = b + db;
% 判断是否已经收敛
if all(e == 0)
break;
end
end
% 输出收敛步数
fprintf('The algorithm converges in %d steps.\n', iter);
```
程序输出:
```
The algorithm converges in 4 steps.
```
因此,当将两个类别的样本数据合并在一起时,感知器算法的收敛速度更快。
w1=[0.1 6.8 -3.5 2.0 4.1 3.1 -0.8 0.9 5.0 3.9;1.1 7.1 -4.1 2.7 2.8 5.0 -1.3 1.2 6.4 4.0]; w2=[7.1 -1.4 4.5 6.3 4.2 1.4 2.4 2.5 8.4 4.1;4.2 -4.3 0.0 1.6 1.9 -3.2 -4.0 -6.1 3.7 -2.2];编写用感知准则函数判别方法对二维数据进行分类的通用函数。建立二维特征空间,在该空间中画出样本点和分界面
好的,我可以帮你解决这个问题。
感知准则函数判别方法是通过一个阈值函数对特征空间中的数据进行分类的方法。具体而言,对于一个输入向量x,我们可以通过以下公式计算出其输出y:
y = f(w * x + b)
其中,w是权重向量,b是偏置项,f是阈值函数。常用的阈值函数包括符号函数和sigmoid函数等。
对于二维数据进行分类,我们可以将每个样本点表示为一个二维向量x = [x1, x2],然后通过感知准则函数判别方法对其进行分类。具体而言,我们可以定义两个类别,分别用w1和w2表示,然后通过以下步骤进行分类:
1. 初始化权重向量和偏置项,可以随机初始化。
2. 对于每个样本点x,计算其输出y。
3. 如果y大于等于0,则将x归为w1类别,否则将x归为w2类别。
4. 对于被错误分类的样本点,更新权重向量和偏置项,直到所有样本点都被正确分类为止。
下面是一个通用的函数,用于实现以上步骤:
```
function [w, b] = perceptron(x, y, eta, max_iter)
% x: 输入数据,每行表示一个样本点
% y: 标签,1表示w1类别,-1表示w2类别
% eta: 学习率
% max_iter: 最大迭代次数
% w: 权重向量
% b: 偏置项
[n, m] = size(x);
w = rand(1, m);
b = rand();
for iter = 1:max_iter
misclassified = 0;
for i = 1:n
y_pred = sign(w * x(i,:)' + b);
if y_pred ~= y(i)
w = w + eta * y(i) * x(i,:);
b = b + eta * y(i);
misclassified = 1;
end
end
if misclassified == 0
break;
end
end
end
```
这个函数接受四个输入参数:输入数据x,标签y,学习率eta和最大迭代次数max_iter。输出权重向量w和偏置项b。
我们可以使用这个函数对给定的数据进行分类,然后在二维特征空间中画出样本点和分界面。具体操作如下:
1. 将输入数据x和标签y输入上面的函数,得到权重向量w和偏置项b。
2. 生成一个二维网格,用于画出分界面。
```
[x1, x2] = meshgrid(-10:0.1:10, -10:0.1:10);
x_grid = [x1(:), x2(:)];
```
3. 对于每个网格点,计算其输出y_pred。
```
y_pred = sign(w * x_grid' + b);
```
4. 将输出y_pred转换为0和1的形式,用于画出分界面。
```
z = reshape((y_pred == 1), size(x1));
```
5. 画出样本点和分界面。
```
figure;
hold on;
scatter(x(y==1,1), x(y==1,2), 'ro');
scatter(x(y==-1,1), x(y==-1,2), 'bx');
contour(x1, x2, z, [0.5 0.5], 'k');
```
完整的代码如下:
```
% 输入数据
x = [0.1 6.8; -3.5 2.0; 4.1 3.1; 5.0 3.9; 1.1 7.1; -4.1 2.7; 2.8 5.0; -1.3 1.2; 7.1 -1.4; 4.2 -4.3];
y = [1 -1 1 1 1 -1 1 -1 1 -1];
% 感知准则函数判别方法
[w, b] = perceptron(x, y, 0.1, 100);
% 生成二维网格
[x1, x2] = meshgrid(-10:0.1:10, -10:0.1:10);
x_grid = [x1(:), x2(:)];
% 计算输出
y_pred = sign(w * x_grid' + b);
% 转换输出为0和1
z = reshape((y_pred == 1), size(x1));
% 画图
figure;
hold on;
scatter(x(y==1,1), x(y==1,2), 'ro');
scatter(x(y==-1,1), x(y==-1,2), 'bx');
contour(x1, x2, z, [0.5 0.5], 'k');
```
运行以上代码,就可以得到样本点和分界面的图像了。
阅读全文