帮我改错,环境是ISE:wire I3_Y; assign sign =~I3_Y; always@(posedge sign) assign I3_Y=I3_Y; 目的是将I3_Y取反 延迟

时间: 2024-10-20 20:18:19 浏览: 19
PDF

解决vue net :ERR_CONNECTION_REFUSED报错问题

看起来你在描述VHDL设计语言中的部分代码,你想让信号I3_Y取反并在上升沿时保持这个状态。不过,你的代码存在一些错误: 1. `assign`语句中不应该有波形前缀`posedge`,它应该放在触发器`always @(posedge)`内。 2. `assign I3_Y = I3_Y;` 这行代码实际上不会改变I3_Y的值,因为它只是简单地复制了输入到输出。 正确的代码应该是这样的: ```vhdl library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity my_entity is Port ( I3_Y : in STD_LOGIC; sign : out STD_LOGIC); end my_entity; architecture Behavioral of my_entity is begin process(I3_Y) variable temp : STD_LOGIC := NOT I3_Y; -- 创建临时变量存储取反后的值 begin -- 使用敏感列表触发器,仅在sign信号上升沿操作 always @(posedge I3_Y or posedge sign) begin if rising_edge(sign) then sign <= temp; -- 当sign上升沿到来时,更新sign的值 end if; end process; end Behavioral; ```
阅读全文

相关推荐

问题在哪?always @ (posedge clk or negedge rst_n) begin if(!rst_n) begin bps_start_r <= 1'bz;//波特率时钟启动信号 tx_en <= 1'b0; tx_data <= 1'b0; count <= 1'b0; end else if(start) begin //接收数据完毕,准备把接收到的数据发回去 bps_start_r <= 1'b1;//波特率时钟状态为1 case(count) 1'b00:begin tx_data <= data[2'd0]; count <= 1'b01; end 1'b01:begin tx_data <= data[2'd1]; count <= 1'b10; end 1'b10:begin//不做这个? tx_data <= data[2'd2]; count <= 1'b00; end default:count <= 1'b00; endcase tx_en <= 1'b1; //进入发送数据状态中 end else if(num==8'd11) begin //数据发送完成,复位 bps_start_r <= 1'b0; tx_en <= 1'b0; end end assign bps_start = bps_start_r; //--------------------------------------------------------- reg rs232_tx_r; always @ (posedge clk or negedge rst_n) begin if(!rst_n) begin num <= 8'd0; rs232_tx_r <= 1'b1; end else if(tx_en)//发送数据使能信号 begin if(clk_bps) begin num <= num+1'b1; case (num) 8'd0: rs232_tx_r <= 1'b0; //发送起始位 8'd1: rs232_tx_r <= tx_data[0] ; //发送第0bit 8'd2: rs232_tx_r <= tx_data[1] ; //发送第1bit 8'd3: rs232_tx_r <= tx_data[2] ; //发送第2bit 8'd4: rs232_tx_r <= tx_data[3] ; //发送第3bit 8'd5: rs232_tx_r <= tx_data[4] ; //发送第4bit 8'd6: rs232_tx_r <= tx_data[5] ; //发送第5bit 8'd7: rs232_tx_r <= tx_data[6] ; //发送第6bit 8'd8: rs232_tx_r <= tx_data[7] ; //发送第7bit 8'd9: rs232_tx_r <= 1'b1; //发送结束位 default: rs232_tx_r <= 1'b1; endcase end else if(num==8'd11) num <= 8'd0; //复位 end end assign rs232_tx = rs232_tx_r;

解释一下这段代码module top( input clk, output ad_clk, (* MARK_DEBUG = "TRUE") input [7:0] ad_data ); parameter DIVIDER = 16; reg [3:0] cout = 4'b0000; reg clk_sample=1'b0; //reg [7:0] last; //reg [7:0] data; always @(posedge clk) begin if (cout == DIVIDER - 1) begin cout <= 4'b0000; clk_sample <= ~clk_sample; // 反转时钟信号 end else begin cout <= cout + 1; end end assign ad_clk=~clk_sample; reg [15:0] data_out; reg[7:0] delay_pipeline1= 8'b0 ; reg[7:0] delay_pipeline2= 8'b0 ; reg[7:0] delay_pipeline3= 8'b0 ; reg[7:0] delay_pipeline4= 8'b0 ; reg[7:0] delay_pipeline5= 8'b0 ; reg[7:0] delay_pipeline6= 8'b0 ; reg[7:0] delay_pipeline7= 8'b0 ; reg[7:0] delay_pipeline8= 8'b0 ; reg[7:0] delay_pipeline9= 8'b0 ; always@(posedge clk_sample) begin delay_pipeline1 <= ad_data ; delay_pipeline2 <= delay_pipeline1 ; delay_pipeline3 <= delay_pipeline2 ; delay_pipeline4 <= delay_pipeline3 ; delay_pipeline5 <= delay_pipeline4 ; delay_pipeline6 <= delay_pipeline5 ; delay_pipeline7 <= delay_pipeline6 ; delay_pipeline8 <=delay_pipeline7 ; delay_pipeline9<= delay_pipeline8 ; end wire[7:0] coeff1 = 8'd7; wire[7:0] coeff2 = 8'd5; wire[7:0] coeff3 = 8'd51; wire[7:0] coeff4 = 8'd135; wire[7:0] coeff5 = 8'd179; wire[7:0] coeff6 = 8'd135; wire[7:0] coeff7 = 8'd51; wire[7:0] coeff8 = 8'd5; wire[7:0] coeff9 = 8'd7; reg signed [16:0] multi_data1=17'b0 ; reg signed [16:0] multi_data2=17'b0 ; reg signed [16:0] multi_data3=17'b0 ; reg signed [16:0] multi_data4=17'b0 ; reg signed [16:0] multi_data5=17'b0 ; reg signed [16:0] multi_data6=17'b0 ; reg signed [16:0] multi_data7=17'b0 ; reg signed [16:0] multi_data8=17'b0 ; reg signed [16:0] multi_data9=17'b0 ; //x(n) * h(n-k) always@(posedge clk_sample) begin multi_data1 <= delay_pipeline1coeff1 ; multi_data2 <= delay_pipeline2coeff2 ; multi_data3 <= delay_pipeline3coeff3 ; multi_data4 <= delay_pipeline4coeff4 ; multi_data5 <= delay_pipeline5coeff5 ; multi_data6 <= delay_pipeline6coeff6 ; multi_data7 <= delay_pipeline7coeff7; multi_data8 <= delay_pipeline8coeff8; multi_data9 <= delay_pipeline9coeff9 ; data_out <= multi_data1 + multi_data2 + multi_data3 + multi_data4 +multi_data5 + multi_data6 + multi_data7 + multi_data8 + multi_data9 ; end ila_0 ila_1( .clk(clk), .probe0(ad_clk), .probe1(data_out), .probe2(ad_data) ); endmodule

//将16位2进制数data转为5*4位BCD码 reg[3:0] dec_out0=4'h0; reg[3:0] dec_out1=4'h0; reg[3:0] dec_out2=4'h0; reg[3:0] dec_out3=4'h0; reg[3:0] dec_out4=4'h0; wire [15:0] product; assign product=data; wire [15:0] bin_in=product; wire[4:0] c_in; wire[4:0] c_out; reg [3:0] dec_sreg0=4'h0; reg [3:0] dec_sreg1=4'h0; reg [3:0] dec_sreg2=4'h0; reg [3:0] dec_sreg3=4'h0; reg [3:0] dec_sreg4=4'h0; wire[3:0] next_sreg0,next_sreg1,next_sreg2,next_sreg3,next_sreg4; reg [7:0] bit_cnt=8'h0; reg [15:0] bin_sreg; wire load=~|bit_cnt;//读入二进制数据,准备转换 wire convert_ready= (bit_cnt==8'h11);//转换成功 wire convert_end= (bit_cnt==8'h12);//完毕,重新开始 always @ (posedge clk) begin if(convert_end) bit_cnt<=4'h0; else bit_cnt<=bit_cnt+4'h1; end always @ (posedge clk) begin if(load) bin_sreg<=bin_in; else bin_sreg <={bin_sreg[14:0],1'b0}; end assign c_in[0] =bin_sreg[15]; assign c_in[1] =(dec_sreg0>=5); assign c_in[2] =(dec_sreg1>=5); assign c_in[3] =(dec_sreg2>=5); assign c_in[4] =(dec_sreg3>=5); assign c_out[0]=c_in[1]; assign c_out[1]=c_in[2]; assign c_out[2]=c_in[3]; assign c_out[3]=c_in[4]; assign c_out[4]=(dec_sreg4>=5); //确定移位输出 assign next_sreg0=c_out[0]? ({dec_sreg0[2:0],c_in[0]}+4'h6):({dec_sreg0[2:0],c_in[0]}); assign next_sreg1=c_out[1]? ({dec_sreg1[2:0],c_in[1]}+4'h6):({dec_sreg1[2:0],c_in[1]}); assign next_sreg2=c_out[2]? ({dec_sreg2[2:0],c_in[2]}+4'h6):({dec_sreg2[2:0],c_in[2]}); assign next_sreg3=c_out[3]? ({dec_sreg3[2:0],c_in[3]}+4'h6):({dec_sreg3[2:0],c_in[3]}); assign next_sreg4=c_out[4]? ({dec_sreg4[2:0],c_in[4]}+4'h6):({dec_sreg4[2:0],c_in[4]}); //装入数据 always @ (posedge clk) begin if(load) begin dec_sreg0<=4'h0; dec_sreg1<=4'h0; dec_sreg2<=4'h0; dec_sreg3<=4'h0; dec_sreg4<=4'h0; end else begin dec_sreg0<=next_sreg0; dec_sreg1<=next_sreg1; dec_sreg2<=next_sreg2; dec_sreg3<=next_sreg3; dec_sreg4<=next_sreg4; end end //输出 always @ (posedge clk) begin if(convert_ready) begin dec_out0<=dec_sreg0; dec_out1<=dec_sreg1; dec_out2<=dec_sreg2; dec_out3<=dec_sreg3; dec_out4<=dec_sreg4; end end

module crc8( data_in, clk, rst_n, crc7, crc6, crc5, crc4, crc3, crc2, crc1, crc0 ); input wire data_in; input wire clk; input wire rst_n; output wire crc7; output wire crc6; output wire crc5; output wire crc4; output wire crc3; output wire crc2; output wire crc1; output wire crc0; wire SYNTHESIZED_WIRE_5; reg DFF_inst8; reg DFF_inst; wire SYNTHESIZED_WIRE_2; wire SYNTHESIZED_WIRE_3; reg DFF_inst3; reg DFF_inst4; reg DFF_inst5; reg DFF_inst6; reg DFF_inst7; reg DFF_inst2; assign crc7 = DFF_inst8; assign crc6 = DFF_inst7; assign crc5 = DFF_inst6; assign crc4 = DFF_inst5; assign crc3 = DFF_inst4; assign crc2 = DFF_inst3; assign crc1 = DFF_inst2; assign crc0 = DFF_inst; always@(posedge clk or negedge rst_n) begin if (!rst_n) begin DFF_inst <= 1; end else begin DFF_inst <= SYNTHESIZED_WIRE_5; end end assign SYNTHESIZED_WIRE_5 = data_in ^ DFF_inst8; assign SYNTHESIZED_WIRE_2 = SYNTHESIZED_WIRE_5 ^ DFF_inst; always@(posedge clk or negedge rst_n) begin if (!rst_n) begin DFF_inst2 <= 1; end else begin DFF_inst2 <= SYNTHESIZED_WIRE_2; end end always@(posedge clk or negedge rst_n) begin if (!rst_n) begin DFF_inst3 <= 1; end else begin DFF_inst3 <= SYNTHESIZED_WIRE_3; end end always@(posedge clk or negedge rst_n) begin if (!rst_n) begin DFF_inst4 <= 1; end else begin DFF_inst4 <= DFF_inst3; end end always@(posedge clk or negedge rst_n) begin if (!rst_n) begin DFF_inst5 <= 1; end else begin DFF_inst5 <= DFF_inst4; end end always@(posedge clk or negedge rst_n) begin if (!rst_n) begin DFF_inst6 <= 1; end else begin DFF_inst6 <= DFF_inst5; end end always@(posedge clk or negedge rst_n) begin if (!rst_n) begin DFF_inst7 <= 1; end else begin DFF_inst7 <= DFF_inst6; end end always@(posedge clk or negedge rst_n) begin if (!rst_n) begin DFF_inst8 <= 1; end else begin DFF_inst8 <= DFF_inst7; end end assign SYNTHESIZED_WIRE_3 = SYNTHESIZED_WIRE_5 ^ DFF_inst2; endmodule 把这个代码修改成CRC-12编码器

最新推荐

recommend-type

解决vue net :ERR_CONNECTION_REFUSED报错问题

这个错误可能出现在多种场景下,比如本地开发环境配置不正确或者网络环境变化等。本文将重点讲解如何解决Vue项目中出现的这个报错问题。 首先,我们分析错误产生的原因。在提供的描述中,作者提到是因为频繁更换...
recommend-type

51jobduoyehtml爬虫程序代码QZQ2.txt

51jobduoyehtml爬虫程序代码QZQ2
recommend-type

白色大气风格的商务英语学习培训网站模板.zip

白色大气风格的商务英语学习培训网站模板.zip
recommend-type

锡林郭勒市五险一金办事指南.docx

锡林郭勒市五险一金办事指南
recommend-type

警务处内务规定.docx

警务处内务规定
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。