wire block_sync_en = enable & ~bypass; logic [$clog2(ND)-1:0] cnt_block_data,cnt_block_data_nxt; assign sync_track = block_sync_en & (cnt_block_data==0); assign cnt_block_data_nxt = (cnt_block_data < msb_num_data)? cnt_block_data + 1'b1 : 1'b0; always @(posedge clk or posedge rst) begin if (rst) cnt_block_data <= 0; else if (in_valid & in_ready & block_sync_en) cnt_block_data <= cnt_block_data_nxt; end wire block_sync = (block_sync_en & ~sync_mode)? block_start : sync_track;

时间: 2024-04-28 14:27:10 浏览: 19
这段代码也是一个 Verilog 代码段,用于计算数据传输中的块同步状态。其中,ND 是一个参数,$clog2(ND)-1:0$ 表示计算出的块数据计数器的数据类型。变量 cnt_block_data 和 cnt_block_data_nxt 用于存储当前和下一个块数据计数器的值。block_sync_en 变量用于控制块同步状态的启用和绕过。sync_track 变量用于跟踪块同步状态。代码中的 assign 块用于分配变量的值。always 块用于在时钟上升沿或复位时更新块数据计数器的值。具体地,如果发生重置,则块数据计数器会被重置为 0;否则,如果输入数据有效并且就绪状态为真且启用了块同步,则块数据计数器会更新为下一个块数据计数器的值。最后,wire 块用于计算块同步状态。如果块同步启用且同步模式为假,则块同步状态为块起始状态,否则为同步跟踪状态。
相关问题

// block synchronization wire block_sync_en = enable & ~bypass; logic [$clog2(ND)-1:0] cnt_block_data,cnt_block_data_nxt; assign sync_track = block_sync_en & (cnt_block_data==0); assign cnt_block_data_nxt = (cnt_block_data < msb_num_data)? cnt_block_data + 1'b1 : 1'b0; always @(posedge clk or posedge rst) begin if (rst) cnt_block_data <= 0; else if (in_valid & in_ready & block_sync_en) cnt_block_data <= cnt_block_data_nxt; end wire block_sync = (block_sync_en & ~sync_mode)? block_start : sync_track;

这段代码实现了一个块同步的功能。首先,它使用 enable 和 bypass 这两个信号进行逻辑运算,得到一个名为 block_sync_en 的 wire。接着,定义了两个逻辑变量 cnt_block_data 和 cnt_block_data_nxt。其中,cnt_block_data 表示当前块内已经传输的数据数量,而 cnt_block_data_nxt 表示下一个时钟周期内块内应该传输的数据数量。 然后,通过 assign 语句将 sync_track 赋值为 block_sync_en 与 cnt_block_data 是否为 0 的逻辑与运算结果。这里的 sync_track 可以理解为是否需要进行块同步的信号。 接着,通过 assign 语句将 cnt_block_data_nxt 赋值为一个三目运算符的结果。如果 cnt_block_data 小于 msb_num_data,则 cnt_block_data_nxt 为 cnt_block_data + 1,否则为 0。 最后,使用 always 语句对 cnt_block_data 进行更新。如果 rst 信号为 1,表示复位,此时 cnt_block_data 被赋值为 0;否则,如果 in_valid、in_ready 和 block_sync_en 三个信号都为 1,表示当前时钟周期内进行了块内的一次数据传输,此时 cnt_block_data 被赋值为 cnt_block_data_nxt。 最终,使用一个 wire 类型的变量 block_sync 来表示是否需要进行块同步。它的值取决于 block_sync_en 和 sync_mode 这两个信号的逻辑运算结果。如果两个信号的逻辑与结果为 0,则 block_sync 为 sync_track;否则 block_sync 为 block_start。

/// programmable block decoder to support protocols such as 64b66b, 64b67b, 128b130b, 128b132b module mppcs_block_dec #( parameter DW = 32, /// max. data width parameter DATA_WIDTH = 32, parameter HW = 4, /// max. header width 4 parameter ND = 16 /// max. number of data per block parameter DATA_PER_BLOCK = 64, ) ( /// ingress data interface input logic [DW-1:0] data_in, /// ingress data before header extraction input logic in_valid, /// ingress flow control output logic in_ready, /// ingress flow control /// egress data interface output logic block_start, /// block synchronization output logic [HW-1:0] header_out, /// block header output logic [DW-1:0] data_out, /// egress data after header extraction output logic out_valid, /// egress flow control input logic out_ready, /// egress flow control /// control options input [$clog2(DW)-1:0] msb_data, /// number of data bits - 1 input [$clog2(HW)-1:0] msb_header, /// number of header bits - 1 input [$clog2(ND)-1:0] msb_num_data, /// number of data per block - 1 output logic sync_track, /// block sync tracking signal input logic sync_mode, /// 0: use external sync directly, 1 : use internal sync after assertion of external sync input logic [3:0] sync_offset, /// offset between sync and block start signal input logic sync_start, /// external sync input logic enable, /// 0: clock-gated, 1: mission mode input logic bypass, /// 1: data pass-through without header insertion /// clock & reset input clk, input rst ); /// mask unused bits in header and data wire [DW+1 :0] data_msk = {({{(DW-1){1'b0}},1'b1}<<msb_data),1'b0} - 1'b1; wire [DW-1:0] data_eff = data_msk[DW-1:0] & data_in; wire [HW+1 :0] header_msk = {({{(HW-1){1'b0}},1'b1}<<msb_header),1'b0} - 1'b1; /// block synchronization wire block_sync_en = enable & ~bypass; logic [$clog2(ND)-1:0] cnt_block_data,cnt_block_data_nxt; logic sync_start_lat; always @(posedge clk or posedge rst) begin if (rst) sync_start_lat <= 0; else sync_start_lat <= sync_start; end

这段代码是一个可编程块解码器,用于支持诸如64b66b、64b67b、128b130b、128b132b等协议。该模块有一个数据输入接口,可以输入数据进行解码;同时也有一个数据输出接口,可以输出解码后的数据。在解码数据时,还需要进行数据屏蔽和头部提取等操作。另外,该模块还具备一些控制选项,比如同步跟踪信号、同步模式和使能等。最后,该模块还有时钟和复位信号。

相关推荐

Read Spd Begin... The memory on CH :1 are different! N: pre svc call fun = 0xc2000f04 -- pm-1 = 0, pm-2 = 29819750, pm-3 = 0 N: ddr fun = 0x0 -- pm = 0x29819750, pm2 = 0x0 N: parameter mcu: v0.5 Mcu Start Work ... get_clocks_value: scpi send command start: 0x10 scpi send command success get clocks = 533 MHZ pll_scp_num = 8 Lmu Freq = 1066Mhz ch = 0 parameter set ch closed! DIMM Don't Probed! ch = 1 the dimm info is from uboot... Dimm_Capacity = 8GB Mcu Channel 1 AES configuration begin... AES bypass end... TZC configuration begin... TZC bypass end... use_0x14 == 0xb0100 ctl_cfg_begin...... pi_cfg_begin...... phy_cfg_begin...... fast mode caslat = 15 wrlat = 14 tinit = 856000 r2r_diffcs_dly = 4 r2w_diffcs_dly = 5 w2r_diffcs_dly = 3 w2w_diffcs_dly = 7 r2w_samecs_dly = 4 w2r_samecs_dly = 0 r2r_samecs_dly = 0 w2w_samecs_dly = 0 ch 1 adapter_alg -- 0-0-0-0-0-0-0 rtt_wr = dis rtt_park = 80ohm ron = 34ohm val_cpudrv = 34 rtt_nom = 48ohm val_cpuodt = 48 vref_dev = 10 vrefsel = 0x45 dq_oe_timing = 0x42 rank_num_decode = 1 set phy_indep_init_mode set pi_dram_init_en set_pi_start & ctl_start...... wait init complete...... init complete done...... wait complete done...... rddqs_lat = 0x2 tdfi_phy_rdlat = 0x1f begin software ntp training... rank_num: 0 phy_write_path_lat_add =-1-1-1-1-1-1-1-1-1 phy_write_path_lat_add = 0 0 0 0 0 0 0 0 0 phy_write_path_lat_add = 1 1 1 1 1 1 1 1 1 phy_write_path_lat_add = 2 2 2 2 2 2 2 2 2 phy_write_path_lat_add = 3 3 3 3 3 3 3 3 3 phy_write_path_lat_add = 4 4 4 4 4 4 4 4 4 rank 0 wdqlvl! r2r_diffcs_dly = 4 r2w_diffcs_dly = 7 w2r_diffcs_dly = 4 w2w_diffcs_dly = 6 r2w_samecs_dly = 5 rank 0 ch 1 training fail

最新推荐

recommend-type

文本(2024-06-23 161043).txt

文本(2024-06-23 161043).txt
recommend-type

PSO_VMD_MCKD 基于PSO_VMD_MCKD方法的风机轴承微弱函数.rar

PSO_VMD_MCKD 基于PSO_VMD_MCKD方法的风机轴承微弱故障诊断。为实现 VMD 和 MCKD 的参数自适应选择,采用粒子群优化算法对两种算法中的参数进行优化,确定适应度函数为包络谱峰值因子。该资源中包括了频谱函数和求包络谱函数
recommend-type

计算机软考高级真题2012年上半年 系统分析师 综合知识.docx

考试资料,计算机软考,系统分析师高级,历年真题资料,WORD版本,无水印,下载。
recommend-type

基于单片机的瓦斯监控系统硬件设计.doc

"基于单片机的瓦斯监控系统硬件设计" 在煤矿安全生产中,瓦斯监控系统扮演着至关重要的角色,因为瓦斯是煤矿井下常见的有害气体,高浓度的瓦斯不仅会降低氧气含量,还可能引发爆炸事故。基于单片机的瓦斯监控系统是一种现代化的监测手段,它能够实时监测瓦斯浓度并及时发出预警,保障井下作业人员的生命安全。 本设计主要围绕以下几个关键知识点展开: 1. **单片机技术**:单片机(Microcontroller Unit,MCU)是系统的核心,它集成了CPU、内存、定时器/计数器、I/O接口等多种功能,通过编程实现对整个系统的控制。在瓦斯监控器中,单片机用于采集数据、处理信息、控制报警系统以及与其他模块通信。 2. **瓦斯气体检测**:系统采用了气敏传感器来检测瓦斯气体的浓度。气敏传感器是一种对特定气体敏感的元件,它可以将气体浓度转换为电信号,供单片机处理。在本设计中,选择合适的气敏传感器至关重要,因为它直接影响到检测的精度和响应速度。 3. **模块化设计**:为了便于系统维护和升级,单片机被设计成模块化结构。每个功能模块(如传感器接口、报警系统、电源管理等)都独立运行,通过单片机进行协调。这种设计使得系统更具有灵活性和扩展性。 4. **报警系统**:当瓦斯浓度达到预设的危险值时,系统会自动触发报警装置,通常包括声音和灯光信号,以提醒井下工作人员迅速撤离。报警阈值可根据实际需求进行设置,并且系统应具有一定的防误报能力。 5. **便携性和安全性**:考虑到井下环境,系统设计需要注重便携性,体积小巧,易于携带。同时,系统的外壳和内部电路设计必须符合矿井的安全标准,能抵抗井下潮湿、高温和电磁干扰。 6. **用户交互**:系统提供了灵敏度调节和检测强度调节功能,使得操作员可以根据井下环境变化进行参数调整,确保监控的准确性和可靠性。 7. **电源管理**:由于井下电源条件有限,瓦斯监控系统需具备高效的电源管理,可能包括电池供电和节能模式,确保系统长时间稳定工作。 通过以上设计,基于单片机的瓦斯监控系统实现了对井下瓦斯浓度的实时监测和智能报警,提升了煤矿安全生产的自动化水平。在实际应用中,还需要结合软件部分,例如数据采集、存储和传输,以实现远程监控和数据分析,进一步提高系统的综合性能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册

![:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册](https://img-blog.csdnimg.cn/20190105170857127.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI3Mjc2OTUx,size_16,color_FFFFFF,t_70) # 1. Python环境变量简介** Python环境变量是存储在操作系统中的特殊变量,用于配置Python解释器和
recommend-type

electron桌面壁纸功能

Electron是一个开源框架,用于构建跨平台的桌面应用程序,它基于Chromium浏览器引擎和Node.js运行时。在Electron中,你可以很容易地处理桌面环境的各个方面,包括设置壁纸。为了实现桌面壁纸的功能,你可以利用Electron提供的API,如`BrowserWindow` API,它允许你在窗口上设置背景图片。 以下是一个简单的步骤概述: 1. 导入必要的模块: ```javascript const { app, BrowserWindow } = require('electron'); ``` 2. 在窗口初始化时设置壁纸: ```javas
recommend-type

基于单片机的流量检测系统的设计_机电一体化毕业设计.doc

"基于单片机的流量检测系统设计文档主要涵盖了从系统设计背景、硬件电路设计、软件设计到实际的焊接与调试等全过程。该系统利用单片机技术,结合流量传感器,实现对流体流量的精确测量,尤其适用于工业过程控制中的气体流量检测。" 1. **流量检测系统背景** 流量是指单位时间内流过某一截面的流体体积或质量,分为瞬时流量(体积流量或质量流量)和累积流量。流量测量在热电、石化、食品等多个领域至关重要,是过程控制四大参数之一,对确保生产效率和安全性起到关键作用。自托里拆利的差压式流量计以来,流量测量技术不断发展,18、19世纪出现了多种流量测量仪表的初步形态。 2. **硬件电路设计** - **总体方案设计**:系统以单片机为核心,配合流量传感器,设计显示单元和报警单元,构建一个完整的流量检测与监控系统。 - **工作原理**:单片机接收来自流量传感器的脉冲信号,处理后转化为流体流量数据,同时监测气体的压力和温度等参数。 - **单元电路设计** - **单片机最小系统**:提供系统运行所需的电源、时钟和复位电路。 - **显示单元**:负责将处理后的数据以可视化方式展示,可能采用液晶显示屏或七段数码管等。 - **流量传感器**:如涡街流量传感器或电磁流量传感器,用于捕捉流量变化并转换为电信号。 - **总体电路**:整合所有单元电路,形成完整的硬件设计方案。 3. **软件设计** - **软件端口定义**:分配单片机的输入/输出端口,用于与硬件交互。 - **程序流程**:包括主程序、显示程序和报警程序,通过流程图详细描述了每个程序的执行逻辑。 - **软件调试**:通过调试工具和方法确保程序的正确性和稳定性。 4. **硬件电路焊接与调试** - **焊接方法与注意事项**:强调焊接技巧和安全事项,确保电路连接的可靠性。 - **电路焊接与装配**:详细步骤指导如何组装电路板和连接各个部件。 - **电路调试**:使用仪器设备检查电路性能,排除故障,验证系统功能。 5. **系统应用与意义** 随着技术进步,单片机技术、传感器技术和微电子技术的结合使得流量检测系统具备更高的精度和可靠性,对于优化工业生产过程、节约资源和提升经济效益有着显著作用。 6. **结论与致谢** 文档结尾部分总结了设计成果,对参与项目的人表示感谢,并可能列出参考文献以供进一步研究。 7. **附录** 包含程序清单和电路总图,提供了具体实现细节和设计蓝图。 此设计文档为一个完整的机电一体化毕业设计项目,详细介绍了基于单片机的流量检测系统从概念到实施的全过程,对于学习单片机应用和流量测量技术的读者具有很高的参考价值。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:Python环境变量配置实战:Win10系统下Python环境变量配置详解

![python配置环境变量win10](https://img-blog.csdnimg.cn/20190105170857127.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI3Mjc2OTUx,size_16,color_FFFFFF,t_70) # 1. Python环境变量配置概述 环境变量是计算机系统中存储和管理配置信息的特殊变量。在Python中,环境变量用于指定Python解释器和库的安装路径,以及其他影响