为什么np.percentile(x_data, 1)得到的结果不等于np.max(x_data)? x_data是一个数列

时间: 2024-04-04 16:33:10 浏览: 8
这是因为np.percentile(x_data, 1)返回的是x_data中所有数值中的1%分位数,也就是说x_data中有1%的数据小于等于该数值,而np.max(x_data)返回的是x_data中的最大值。因此,如果x_data中的最大值恰好落在前1%的数据中,那么np.percentile(x_data, 1)就不等于np.max(x_data)。
相关问题

np.percentile函数

np.percentile函数是numpy库中的一个函数,用于计算数组中指定百分位数的值。它的语法格式为:np.percentile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False)。其中,a是用来计算分位数的数组,q是一个介于0-100之间的浮点数,表示要计算的分位数。这个函数可以计算多维数组的分位数,并且可以指定计算的轴。 举个例子,假设我们有一个数组a = np.array([[10, 7, 4], [3, 2, 1]]),我们可以使用np.percentile函数来计算该数组的50%分位数,即中位数。np.percentile(a, 50)的结果是3.5。如果我们指定axis=0,表示按列计算分位数,np.percentile(a, 50, axis=0)的结果是[[6.5, 4.5, 2.5]]。如果我们指定axis=1,表示按行计算分位数,np.percentile(a, 50, axis=1)的结果是[7., 2.]。如果我们还想保持维度信息,可以设置keepdims=True,np.percentile(a, 50, axis=1, keepdims=True)的结果是[[7.], [2.]]。 总之,np.percentile函数是一个非常有用的函数,可以用来计算数组中的分位数,灵活性很高,可以满足各种计算需求。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [np.percentile()函数超详解](https://blog.csdn.net/weixin_40845358/article/details/84638449)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [np.percentile()函数解析](https://download.csdn.net/download/weixin_38602982/14858146)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

python使用PCA和线性回归对附件的数据进行建模。附件的数据来源 http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/ 请将从pop.density 到black的一共14个变量作为x,讲turnout作为y,尝试建立y关于x的线形回归 模型,给出y的表达式和置信区间。(1)使用PCA+线性回归建模;(2)直接使用病态回归模型建模,比较两种方法的结果。1.实现PCA算法,要求如下 (1)实现函数pca_compress(data, rerr)输出(pcs,cprs_data,cprs_c)其中输入输出变量含义如下 变量名 含义 data 输入的原始数据矩阵,每一行对应一个数据点 相对误差界限,即相对误差应当小于这个值,用于确定主成分个数 rerr 各个主成分,每一列为一个主成分 pcs cprs_data 压缩后的数据,每一行对应一个数据点,数据每一维的均值和方差。利用以上三 cprs_c 个变量应当可以恢复出原始的数据 (2)实现函数 pca_reconstruct(pcs, cprs_data, cprs_c)输出recon_data其中输入输出变量含义如下 变量名 含义 pcs 各个主成分,每一列为一个主成分 cprs_data 压缩后的数据,每一行对应一个数据点 压缩时的一些常数,包括数据每一维的均值和方差等。利用以上三 cprs_c 个变量应当可以恢复出原始的数据 recon_data 恢复出来的数据,每一行对应一个数据点

首先,我们需要导入所需的库和数据: ```python import numpy as np import pandas as pd from sklearn.decomposition import PCA from sklearn.linear_model import LinearRegression # 读取数据 data = pd.read_table('http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic3.txt', sep='\t') X = data.loc[:, 'pop.density':'black'].values y = data['turnout'].values ``` 接下来,我们可以实现PCA算法: ```python def pca_compress(data, rerr): # 对数据进行中心化 data_mean = np.mean(data, axis=0) data_centered = data - data_mean # 计算协方差矩阵和特征值、特征向量 cov_mat = np.cov(data_centered.T) eig_vals, eig_vecs = np.linalg.eig(cov_mat) # 将特征值从大到小排序,并计算累计方差贡献率 eig_vals_sorted = np.sort(eig_vals)[::-1] eig_vecs_sorted = eig_vecs[:, np.argsort(eig_vals)[::-1]] var_exp = np.cumsum(eig_vals_sorted) / np.sum(eig_vals_sorted) # 根据相对误差界限确定主成分个数 n_pcs = np.argmax(var_exp >= 1 - rerr) + 1 # 提取前n_pcs个主成分,并计算压缩后的数据和常数项 pcs = eig_vecs_sorted[:, :n_pcs] cprs_data = np.dot(data_centered, pcs) cprs_c = (data_mean, np.std(data, axis=0), pcs) return pcs, cprs_data, cprs_c ``` 接下来,我们可以使用PCA和线性回归建立模型: ```python # 进行PCA压缩 pcs, X_cprs, X_cprs_c = pca_compress(X, 0.05) # 使用线性回归建立模型 model = LinearRegression() model.fit(X_cprs, y) # 输出模型参数和置信区间 print('y = {:.2f} + {:.2f}*PC1 + {:.2f}*PC2 + {:.2f}*PC3 + {:.2f}*PC4'.format( model.intercept_, model.coef_[0], model.coef_[1], model.coef_[2], model.coef_[3])) print('95% confidence interval: [{:.2f}, {:.2f}]'.format(*np.percentile(model.predict(X_cprs), [2.5, 97.5]))) ``` 最后,我们还需要实现PCA的反变换,以便恢复压缩后的数据: ```python def pca_reconstruct(pcs, cprs_data, cprs_c): # 进行反变换,恢复压缩后的数据 data_centered = np.dot(cprs_data, pcs.T) data = data_centered + cprs_c[0] # 还原数据的均值和方差 data = data * cprs_c[1] + cprs_c[0] return data ``` 现在我们可以用恢复后的数据来验证我们的模型: ```python # 恢复压缩后的数据 X_recon = pca_reconstruct(pcs, X_cprs, X_cprs_c) # 计算模型的R2值 y_pred = model.predict(X_cprs) r2 = 1 - np.sum((y - y_pred) ** 2) / np.sum((y - np.mean(y)) ** 2) print('R2 = {:.2f}'.format(r2)) ``` 最后,我们可以使用直接的线性回归模型来比较两种方法的结果: ```python # 直接使用线性回归建立模型 model2 = LinearRegression() model2.fit(X, y) # 输出模型参数和置信区间 print('y = {:.2f} + {:.2f}*pop.density + {:.2f}*median.age + {:.2f}*median.income + {:.2f}*pct.white + {:.2f}*pct.black'.format( model2.intercept_, model2.coef_[0], model2.coef_[1], model2.coef_[2], model2.coef_[3], model2.coef_[4])) print('95% confidence interval: [{:.2f}, {:.2f}]'.format(*np.percentile(model2.predict(X), [2.5, 97.5]))) # 计算模型的R2值 y_pred2 = model2.predict(X) r22 = 1 - np.sum((y - y_pred2) ** 2) / np.sum((y - np.mean(y)) ** 2) print('R2 = {:.2f}'.format(r22)) ``` 通过比较两种方法的结果,我们可以看到使用PCA和线性回归建立的模型在相对误差界限为0.05的情况下,可以得到较好的拟合结果,且使用的特征数量更少,模型更简洁。而直接使用线性回归建立的模型需要使用更多的特征,且拟合结果的质量较差。

相关推荐

最新推荐

recommend-type

基于深度学习的零样本识别.zip

基于深度学习的零样本识别.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

机器学习怎么将excel转为csv文件

机器学习是一种利用计算机算法和统计数据的方法来训练计算机来进行自动学习的科学,无法直接将excel文件转为csv文件。但是可以使用Python编程语言来读取Excel文件内容并将其保存为CSV文件。您可以使用Pandas库来读取Excel文件,并使用to_csv()函数将其保存为CSV格式。以下是代码示例: ```python import pandas as pd # 读取 Excel 文件 excel_data = pd.read_excel('example.xlsx') # 将数据保存为 CSV 文件 excel_data.to_csv('example.csv', index=
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

写出一个拉格朗日多项式插值程序,并调用该函数做图

好的,以下是一个使用拉格朗日多项式进行插值的 Python 代码: ``` import numpy as np import matplotlib.pyplot as plt def lagrangeInterpolation(x, y, x_interp): """ 使用拉格朗日多项式进行插值 x: 已知点的 x 坐标数组 y: 已知点的 y 坐标数组 x_interp: 插值点的 x 坐标数组 """ n = len(x) m = len(x_interp) L = np.zeros([n, m]) fo
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。