基于决策树算法对房价预测(包含数据集和代码)

时间: 2024-01-12 14:02:28 浏览: 37
好的,以下是基于决策树算法对房价预测的代码和数据集: 首先,我们需要准备数据集。此处使用的是scikit-learn库自带的波士顿房价数据集。 ```python from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split import pandas as pd data = load_boston() df = pd.DataFrame(data.data, columns=data.feature_names) df['price'] = data.target X_train, X_test, y_train, y_test = train_test_split(df[data.feature_names], df['price'], test_size=0.2, random_state=42) ``` 接着,我们使用sklearn库中的DecisionTreeRegressor类建立决策树模型,并训练模型: ```python from sklearn.tree import DecisionTreeRegressor model = DecisionTreeRegressor(max_depth=5) model.fit(X_train, y_train) ``` 最后,我们使用测试集进行模型评估: ```python from sklearn.metrics import mean_squared_error y_pred = model.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("MSE:", mse) ``` 完整代码如下: ```python from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor from sklearn.metrics import mean_squared_error import pandas as pd # 准备数据集 data = load_boston() df = pd.DataFrame(data.data, columns=data.feature_names) df['price'] = data.target X_train, X_test, y_train, y_test = train_test_split(df[data.feature_names], df['price'], test_size=0.2, random_state=42) # 建立决策树模型并训练 model = DecisionTreeRegressor(max_depth=5) model.fit(X_train, y_train) # 模型评估 y_pred = model.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("MSE:", mse) ``` 希望能对你有所帮助!

相关推荐

最新推荐

recommend-type

基于MapReduce实现决策树算法

主要为大家详细介绍了基于MapReduce实现决策树算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

基于ID3决策树算法的实现(Python版)

下面小编就为大家带来一篇基于ID3决策树算法的实现(Python版)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
recommend-type

Java实现的决策树算法完整实例

主要介绍了Java实现的决策树算法,简单描述了决策树的概念、原理,并结合完整实例形式分析了java实现决策树算法的相关操作技巧,代码中备有较为详尽的注释便于理解,需要的朋友可以参考下
recommend-type

Python机器学习之决策树算法实例详解

主要介绍了Python机器学习之决策树算法,较为详细的分析了实例详解机器学习中决策树算法的概念、原理及相关Python实现技巧,需要的朋友可以参考下
recommend-type

决策树剪枝算法的python实现方法详解

主要介绍了决策树剪枝算法的python实现方法,结合实例形式较为详细的分析了决策树剪枝算法的概念、原理并结合实例形式分析了Python相关实现技巧,需要的朋友可以参考下
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。