pandas dataframe
时间: 2023-08-09 18:11:16 浏览: 121
Pandas DataFrame是一个二维的数据结构,可以用来存储和处理数据。它由行和列组成,每一列可以有不同的数据类型。DataFrame可以通过多种方式创建,包括模拟数据、指定数据和索引/列等。下面是几个创建DataFrame的例子:
1. 使用模拟数据创建DataFrame:
```python
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(365,4), index=pd.date_range('01/01/2018',periods=365),columns=list('ABCD'))
print(df)
```
这个例子中,我们使用了`np.random.randn`函数生成了一个365行4列的随机数矩阵,并将其转换为DataFrame。我们还指定了日期作为索引,列名为A、B、C和D。最后,我们打印了这个DataFrame。
2. 使用指定数据创建DataFrame:
```python
import pandas as pd
data = \[\['kevin',40\],\['mike',40\],\['tony',50\]\]
df = pd.DataFrame(data,columns=\['name','Age'\])
print(df)
```
这个例子中,我们使用了一个包含姓名和年龄的列表作为数据,然后将其转换为DataFrame。我们还指定了列名为name和Age。最后,我们打印了这个DataFrame。
3. 使用指定数据和索引/列创建DataFrame:
```python
import pandas as pd
import numpy as np
df1 = pd.DataFrame(data=\[\[1, 2, 3\], \[11, 12, 13\]\], index=\['r_1', 'r_2'\], columns=\['A', 'B', 'C'\])
df2 = pd.DataFrame(data=\[\[1\], \[11\]\], index=\['r_1', 'r_2'\], columns=\['A'\])
df3 = pd.DataFrame(data=np.arange(12).reshape(3, 4), index=list("abc"), columns=list("ABCD"))
print(df1)
print(df2)
print(df3)
```
这个例子中,我们使用了不同的数据和索引/列来创建了三个DataFrame。df1使用了一个二维列表作为数据,指定了行索引和列名;df2使用了一个二维列表作为数据,只指定了行索引;df3使用了一个二维的NumPy数组作为数据,同时指定了行索引和列名。最后,我们打印了这三个DataFrame。
希望这些例子能帮助你理解Pandas DataFrame的创建方式。
#### 引用[.reference_title]
- *1* [pandas入门(二):pandas中DataFrame的用法](https://blog.csdn.net/weixin_40425640/article/details/123845021)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* [一文搞定Pandas核心概念之DataFrame](https://blog.csdn.net/liwenxiang629/article/details/128285823)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item]
- *3* [Pandas之DataFrame详解](https://blog.csdn.net/ytp552200ytp/article/details/115550564)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文