Yolov8断点续训/继续训练
时间: 2023-07-19 20:52:52 浏览: 1355
如果你想在YOLOv8中实现断点续训/继续训练,你可以按照以下步骤操作:
1. 在训练之前,将YOLOv8的参数文件保存在硬盘上。这可以通过在训练命令中添加参数`--save_weights`来实现。例如:`python train.py --save_weights ./checkpoints/yolov8`
2. 在训练过程中,如果需要中断训练,可以按`Ctrl + C`键来停止训练。此时,YOLOv8会将当前的训练状态保存在硬盘上。
3. 如果需要继续训练,可以使用之前保存的参数文件来恢复训练。这可以通过在训练命令中添加参数`--weights`来实现。例如:`python train.py --weights ./checkpoints/yolov8`
4. 在继续训练之前,需要确保训练数据和参数文件的路径与之前一致。如果路径不一致,可能会导致训练失败或产生错误的结果。
5. 继续训练时,YOLOv8会从上次中断的地方开始训练,而不是从头开始。这样可以大大缩短训练时间,并且可以获得更好的结果。
总之,YOLOv8的断点续训/继续训练非常简单,只需要保存参数文件并在需要时使用它们即可。
相关问题
yolov8 断点续训练
YOLOv8(You Only Look Once version 8)是YOLO系列的最新版本,它是一款实时目标检测算法,以其高效和准确性而闻名。断点续训(checkpointing for resuming training)是指在深度学习中,如果你需要暂停模型的训练并稍后恢复,可以保存训练过程中的一部分状态,包括模型参数和进度,以便后续能够从这个已有的状态继续训练。
在YOLOv8中进行断点续训的步骤通常包括:
1. **保存训练状态**:在训练过程中,当你想要保存当前的模型状态时,可以保存模型的权重文件(`.weights`)以及训练相关的配置文件(`.cfg`),这些文件包含了模型架构和训练参数。
```bash
python train.py --cfg config.cfg --weights yolov8.weights --save-last-checkpoint
```
2. **加载训练状态**:当你想继续训练时,使用`--resume-from-checkpoint`或`--load-weights`选项加载上一次保存的权重。
```bash
python train.py --cfg config.cfg --resume-from-checkpoint yolov8.resume --batch-size <new_batch_size>
```
3. **调整训练设置**:可能需要调整某些训练参数,如批量大小、学习率等,以适应新的训练需求。
yolov8断点续训并减少epoch
以下是如何在YOLOv8中进行断点续训并减少epoch的方法:
1. 在YOLOv8的训练过程中,如果需要中断训练,可以使用`Ctrl + C`来中断。
2. 要恢复训练,需要在训练命令中添加`--resume`参数,并指定之前训练的权重文件路径,例如:
```
python train.py --resume runs/train/exp/weights/last.pt
```
3. 如果要减少epoch,可以在训练命令中添加`--epochs`参数,并指定新的epoch数,例如:
```
python train.py --resume runs/train/exp/weights/last.pt --epochs 300
```
4. 运行上述命令后,训练将从上次中断的epoch继续进行,并在达到指定的epoch数后停止。
阅读全文