nn.Embedding(1, output_size)
时间: 2024-08-14 17:09:39 浏览: 36
Tensorflow实现LSTM详解.pdf
`nn.Embedding(1, output_size)`是PyTorch库中的一个神经网络层,通常用于处理词嵌入(word embeddings)。它属于`torch.nn.EmbeddingBag`模块的一部分,但这里简化版本是指单维度的嵌入层,常用于单一维度的数据如标签或类别id。其中:
- `1` 表示输入维度,这里是1维的,例如只有一列特征或者是一个离散的类别值。
- `output_size` 是嵌入向量的大小,即每个输入元素(在这种情况下是个类别ID)将被转换成一个`output_size`长度的向量。这个向量通常用于捕捉输入项的复杂表示,比如词汇表中的单词可以用高维稠密向量表示。
这个层的主要作用是在模型训练过程中,将输入的整数编码(例如,索引)映射为固定长度的实数值向量,这在诸如循环神经网络(RNNs)、卷积神经网络(CNNs)等序列模型中非常常见,用于捕获输入数据的上下文信息。
阅读全文