nn.Embedding(1, output_size)

时间: 2024-08-14 08:09:39 浏览: 24
`nn.Embedding(1, output_size)`是PyTorch库中的一个神经网络层,通常用于处理词嵌入(word embeddings)。它属于`torch.nn.EmbeddingBag`模块的一部分,但这里简化版本是指单维度的嵌入层,常用于单一维度的数据如标签或类别id。其中: - `1` 表示输入维度,这里是1维的,例如只有一列特征或者是一个离散的类别值。 - `output_size` 是嵌入向量的大小,即每个输入元素(在这种情况下是个类别ID)将被转换成一个`output_size`长度的向量。这个向量通常用于捕捉输入项的复杂表示,比如词汇表中的单词可以用高维稠密向量表示。 这个层的主要作用是在模型训练过程中,将输入的整数编码(例如,索引)映射为固定长度的实数值向量,这在诸如循环神经网络(RNNs)、卷积神经网络(CNNs)等序列模型中非常常见,用于捕获输入数据的上下文信息。
相关问题

class PoetryModel(nn.Module): def init(self, vocab_size, embedding_dim, hidden_dim): super(PoetryModel, self).init() self.hidden_dim = hidden_dim self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, self.hidden_dim, num_layers=3) self.classifier=nn.Sequential( nn.Linear(self.hidden_dim, 512), nn.ReLU(inplace=True), nn.Linear(512, 2048), nn.ReLU(inplace=True), nn.Linear(2048, vocab_size) ) def forward(self, input, hidden = None): seq_len, batch_size = input.size() if hidden is None: h_0 = input.data.new(3, batch_size, self.hidden_dim).fill_(0).float() c_0 = input.data.new(3, batch_size, self.hidden_dim).fill_(0).float() else: h_0, c_0 = hidden embeds = self.embedding(input) output, hidden = self.lstm(embeds, (h_0, c_0)) output = self.classifier(output.view(seq_len * batch_size, -1)) return output, hidden 请优化这段代码

这段代码已经写得比较好了,但是有几个可以改进的地方: 1. 在初始化函数中使用 super() 函数时,应该将 PoetryModel 类的名称作为第一个参数,而不是使用 super() 函数的默认参数。 2. 在 forward 函数中,应该使用 new_zeros() 方法来初始化 h_0 和 c_0,而不是使用 fill_() 方法。 3. 在 forward 函数中,应该使用 contiguous() 方法来确保输入的张量在内存中是连续的,这样可以加快计算速度。 改进后的代码如下所示: ```python class PoetryModel(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim): super(PoetryModel, self).__init__() self.hidden_dim = hidden_dim self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, self.hidden_dim, num_layers=3) self.classifier = nn.Sequential( nn.Linear(self.hidden_dim, 512), nn.ReLU(inplace=True), nn.Linear(512, 2048), nn.ReLU(inplace=True), nn.Linear(2048, vocab_size) ) def forward(self, input, hidden=None): seq_len, batch_size = input.size() if hidden is None: h_0 = input.data.new_zeros(3, batch_size, self.hidden_dim).float() c_0 = input.data.new_zeros(3, batch_size, self.hidden_dim).float() else: h_0, c_0 = hidden embeds = self.embedding(input) embeds = embeds.contiguous() output, hidden = self.lstm(embeds, (h_0, c_0)) output = self.classifier(output.view(seq_len * batch_size, -1)) return output, hidden ``` 这个优化版本主要是将 super() 函数中的参数修改为 PoetryModel 类的名称,使用了 new_zeros() 方法初始化 h_0 和 c_0,使用了 contiguous() 方法确保输入的张量在内存中是连续的。这样可以提高代码的效率和可读性。

import torch import torch.nn as nn import torch.optim as optim import numpy as np 定义基本循环神经网络模型 class RNNModel(nn.Module): def init(self, rnn_type, input_size, hidden_size, output_size, num_layers=1): super(RNNModel, self).init() self.rnn_type = rnn_type self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layers = num_layers self.encoder = nn.Embedding(input_size, hidden_size) if rnn_type == 'RNN': self.rnn = nn.RNN(hidden_size, hidden_size, num_layers) elif rnn_type == 'GRU': self.rnn = nn.GRU(hidden_size, hidden_size, num_layers) self.decoder = nn.Linear(hidden_size, output_size) def forward(self, input, hidden): input = self.encoder(input) output, hidden = self.rnn(input, hidden) output = output.view(-1, self.hidden_size) output = self.decoder(output) return output, hidden def init_hidden(self, batch_size): if self.rnn_type == 'RNN': return torch.zeros(self.num_layers, batch_size, self.hidden_size) elif self.rnn_type == 'GRU': return torch.zeros(self.num_layers, batch_size, self.hidden_size) 定义数据集 with open('汉语音节表.txt', encoding='utf-8') as f: chars = f.readline() chars = list(chars) idx_to_char = list(set(chars)) char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)]) corpus_indices = [char_to_idx[char] for char in chars] 定义超参数 input_size = len(idx_to_char) hidden_size = 256 output_size = len(idx_to_char) num_layers = 1 batch_size = 32 num_steps = 5 learning_rate = 0.01 num_epochs = 100 定义模型、损失函数和优化器 model = RNNModel('RNN', input_size, hidden_size, output_size, num_layers) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) 训练模型 for epoch in range(num_epochs): model.train() hidden = model.init_hidden(batch_size) loss = 0 for X, Y in data_iter_consecutive(corpus_indices, batch_size, num_steps): optimizer.zero_grad() hidden = hidden.detach() output, hidden = model(X, hidden) loss = criterion(output, Y.view(-1)) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() if epoch % 10 == 0: print(f"Epoch {epoch}, Loss: {loss.item()}")请正确缩进代码

下面是正确缩进的代码: ```python import torch import torch.nn as nn import torch.optim as optim import numpy as np # 定义基本循环神经网络模型 class RNNModel(nn.Module): def __init__(self, rnn_type, input_size, hidden_size, output_size, num_layers=1): super(RNNModel, self).__init__() self.rnn_type = rnn_type self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layers = num_layers self.encoder = nn.Embedding(input_size, hidden_size) if rnn_type == 'RNN': self.rnn = nn.RNN(hidden_size, hidden_size, num_layers) elif rnn_type == 'GRU': self.rnn = nn.GRU(hidden_size, hidden_size, num_layers) self.decoder = nn.Linear(hidden_size, output_size) def forward(self, input, hidden): input = self.encoder(input) output, hidden = self.rnn(input, hidden) output = output.view(-1, self.hidden_size) output = self.decoder(output) return output, hidden def init_hidden(self, batch_size): if self.rnn_type == 'RNN': return torch.zeros(self.num_layers, batch_size, self.hidden_size) elif self.rnn_type == 'GRU': return torch.zeros(self.num_layers, batch_size, self.hidden_size) # 定义数据集 with open('汉语音节表.txt', encoding='utf-8') as f: chars = f.readline() chars = list(chars) idx_to_char = list(set(chars)) char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)]) corpus_indices = [char_to_idx[char] for char in chars] # 定义超参数 input_size = len(idx_to_char) hidden_size = 256 output_size = len(idx_to_char) num_layers = 1 batch_size = 32 num_steps = 5 learning_rate = 0.01 num_epochs = 100 # 定义模型、损失函数和优化器 model = RNNModel('RNN', input_size, hidden_size, output_size, num_layers) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 for epoch in range(num_epochs): model.train() hidden = model.init_hidden(batch_size) loss = 0 for X, Y in data_iter_consecutive(corpus_indices, batch_size, num_steps): optimizer.zero_grad() hidden = hidden.detach() output, hidden = model(X, hidden) loss = criterion(output, Y.view(-1)) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() if epoch % 10 == 0: print(f"Epoch {epoch}, Loss: {loss.item()}") ```

相关推荐

import torch import torch.nn as nn from torchtext.datasets import AG_NEWS from torchtext.data.utils import get_tokenizer from torchtext.vocab import build_vocab_from_iterator # 数据预处理 tokenizer = get_tokenizer('basic_english') train_iter = AG_NEWS(split='train') counter = Counter() for (label, line) in train_iter: counter.update(tokenizer(line)) vocab = build_vocab_from_iterator([counter], specials=["<unk>"]) word2idx = dict(vocab.stoi) # 设定超参数 embedding_dim = 64 hidden_dim = 128 num_epochs = 10 batch_size = 64 # 定义模型 class RNN(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim): super(RNN, self).__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) self.rnn = nn.RNN(embedding_dim, hidden_dim, batch_first=True) self.fc = nn.Linear(hidden_dim, 4) def forward(self, x): x = self.embedding(x) out, _ = self.rnn(x) out = self.fc(out[:, -1, :]) return out # 初始化模型、优化器和损失函数 model = RNN(len(vocab), embedding_dim, hidden_dim) optimizer = torch.optim.Adam(model.parameters()) criterion = nn.CrossEntropyLoss() # 定义数据加载器 train_iter = AG_NEWS(split='train') train_data = [] for (label, line) in train_iter: label = torch.tensor([int(label)-1]) line = torch.tensor([word2idx[word] for word in tokenizer(line)]) train_data.append((line, label)) train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True) # 开始训练 for epoch in range(num_epochs): total_loss = 0.0 for input, target in train_loader: model.zero_grad() output = model(input) loss = criterion(output, target.squeeze()) loss.backward() optimizer.step() total_loss += loss.item() * input.size(0) print("Epoch: {}, Loss: {:.4f}".format(epoch+1, total_loss/len(train_data)))改错

解释这段代码import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from sklearn.metrics import accuracy_score import jieba from CLDNN2 import CLDNN from CLDNNtest import CLDNNtest # 定义超参数 MAX_LENGTH = 100 # 输入序列的最大长度 VOCAB_SIZE = 35091 # 词汇表大小 EMBEDDING_SIZE = 128 # 词向量的维度 NUM_FILTERS = 100 # 卷积核数量 FILTER_SIZES = [2, 3, 4] # 卷积核尺寸 class SentimentDataset(Dataset): def __init__(self, texts, labels): self.texts = texts self.labels = labels def __len__(self): return len(self.texts) def __getitem__(self, index): text = self.texts[index] label = self.labels[index] return text, label class CNNClassifier(nn.Module): def __init__(self, vocab_size, embedding_size, num_filters, filter_sizes, output_size, dropout): super().__init__() self.embedding = nn.Embedding(vocab_size, embedding_size) # self.convs = nn.ModuleList([ # nn.Conv2d(1, num_filters, (fs, embedding_size)) for fs in filter_sizes # ]) self.convs = nn.Sequential( nn.Conv2d(1, num_filters, (2, 2)), # nn.MaxPool2d(2), nn.ReLU(inplace=True), nn.Conv2d(num_filters, num_filters, (3, 3)), nn.ReLU(inplace=True), nn.Conv2d(num_filters, num_filters, (4, 4)), nn.MaxPool2d(2), nn.ReLU(inplace=True), nn.Dropout(dropout) ) self.fc = nn.Sequential( nn.Linear(286700, 300), nn.Linear(300, output_size) ) # self.dropout = nn.Dropout(dropout) def forward(self, text): # text: batch_size * seq_len embedded = self.embedding(text) # batch_size * seq_len * embedding_size # print(embedded.shape) embedded = embedded.unsqueeze(1) # batch_size * 1 * seq_len * embedding_size x = self.convs(embedded) print(x.shape) # print(embedded.shape) # conved = [F.relu(conv(embedded)).squeeze(3)

最新推荐

recommend-type

Spring Boot 评论系统.zip

这是一个基于Spring boot框架开发的简单AJAX评论系统,整合了Spring Data JPA、Hibernate、jQuery等技术。系统可实现评论的创建、查看、编辑和删除等功能,为网站或应用程序提供用户互动功能。该项目提供了详细的运行指南,包括项目导入、环境配置、数据库设置、应用属性配置以及运行命令等。用户可以通过访问指定的URL使用该系统,同时可通过邮件提供反馈和建议。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
recommend-type

基于thinkPHP6+的站长必备工具箱最新在线工具箱网站系统源码分享下载

基于thinkPHP6+的站长必备工具箱最新在线工具箱网站系统源码分享下载基于thinkPHP6+的站长必备工具箱最新在线工具箱网站系统源码分享下载基于thinkPHP6+的站长必备工具箱最新在线工具箱网站系统源码分享下载基于thinkPHP6+的站长必备工具箱最新在线工具箱网站系统源码分享下载基于thinkPHP6+的站长必备工具箱最新在线工具箱网站系统源码分享下载基于thinkPHP6+的站长必备工具箱最新在线工具箱网站系统源码分享下载基于thinkPHP6+的站长必备工具箱最新在线工具箱网站系统源码分享下载基于thinkPHP6+的站长必备工具箱最新在线工具箱网站系统源码分享下载基于thinkPHP6+的站长必备工具箱最新在线工具箱网站系统源码分享下载基于thinkPHP6+的站长必备工具箱最新在线工具箱网站系统源码分享下载基于thinkPHP6+的站长必备工具箱最新在线工具箱网站系统源码分享下载基于thinkPHP6+的站长必备工具箱最新在线工具箱网站系统源码分享下载基于thinkPHP6+的站长必备工具箱最新在线工具箱网站系统源码分享下载基于thinkPHP6+的站长必备工具
recommend-type

十种常见电感线圈电感量计算公式详解

本文档详细介绍了十种常见的电感线圈电感量的计算方法,这对于开关电源电路设计和实验中的参数调整至关重要。计算方法涉及了圆截面直导线、同轴电缆线、双线制传输线、两平行直导线间的互感以及圆环的电感。以下是每种类型的电感计算公式及其适用条件: 1. **圆截面直导线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi r} \) (在 \( l >> r \) 的条件下) - \( l \) 表示导线长度,\( r \) 表示导线半径,\( \mu_0 \) 是真空导磁率。 2. **同轴电缆线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi (r1 + r2)} \) (忽略外导体厚度) - \( r1 \) 和 \( r2 \) 分别为内外导体直径。 3. **双线制传输线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi^2 D \ln(\frac{D+r}{r})} \) (条件:\( l >> D, D >> r \)) - \( D \) 是两导线间距离。 4. **两平行直导线的互感** - 公式:\( M = \frac{\mu_0 l}{2\pi r} \ln(\frac{D}{d}) \) (条件:\( D >> r \)) - \( d \) 是单个导线半径,互感与距离 \( D \) 有关。 5. **圆环的电感** - 公式:\( L = \mu_0 R \ln(\frac{R}{r}) \) - \( R \) 是圆环的外半径,\( r \) 是圆环截面的半径。 在电路设计中,计算这些电感值有助于确保电路性能的准确性和稳定性。值得注意的是,实际应用中还需要考虑线圈的形状、材料(包括磁芯的相对导磁率)和外部因素,如磁珠的影响。此外,这些公式通常是在理想化情况下给出的,实际应用中可能需要考虑非线性效应和频率依赖性。对于复杂线圈,可能需要借助于电磁场仿真软件进行精确计算。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【树结构遍历操作】:JavaScript深度优先与广度优先算法详解

![js+数据结构更改](https://www.freecodecamp.org/news/content/images/2021/04/JavaScript-splice-method.png) # 1. 树结构遍历操作概述 在计算机科学中,树结构是表示数据的一种重要方式,尤其在处理层次化数据时显得尤为重要。树结构遍历操作是树上的核心算法,它允许我们访问树中每一个节点一次。这种操作广泛应用于搜索、排序、以及各种优化问题中。本章将概览树结构遍历的基本概念、方法和实际应用场景。 ## 1.1 树结构的定义与特性 树是由一个集合作为节点和一组连接这些节点的边构成的图。在树结构中,有一个特殊
recommend-type

年份是否为闰年C语言判断

在C语言中,判断一个年份是否为闰年的标准有以下几个规则: 1. **普通闰年**:能被4整除但不能被100整除的年份是普通闰年,如2004年就是闰年。 2. **世纪闰年**:能被400整除的年份也是闰年,但如果是整百数(例如1900年),则需要满足能被400整除才能是闰年。 下面是简单的C语言函数来判断一个年份是否是闰年: ```c #include <stdbool.h> bool is_leap_year(int year) { if (year % 4 != 0) { // 如果不是4的倍数,则直接返回false return false; }
recommend-type

军用车辆:CAN总线的集成与优势

本文探讨了CAN总线在军用车辆中的应用,针对军用车辆电子系统的发展趋势和需求,着重分析了将CAN总线技术引入军用车辆的必要性和可行性。军用车辆的电子化程度日益提高,电子设备的集成和资源共享成为关键,以提升整体性能和作战效能。CAN总线(Controller Area Network)作为一种成功的民用汽车通信技术,因其模块化、标准化、小型化以及高效能的特点,被提出作为军用车辆的潜在解决方案。 首先,文章指出军用车辆的数据通信需求不同于一般计算机网络,它强调实时性、可靠性、短帧信息传输、频繁的信息交换以及高安全性。CAN总线正好满足这些特殊要求,它支持多主机通信模式,允许灵活的数据交换,并且具有固定的报文格式,这在满足军用车辆实时和高效的数据处理中具有优势。 对比了CAN总线与传统的军用通信标准1553B后,文中强调了CAN总线在可靠性方面的明显优势,尤其是在复杂环境和高负载情况下,其容错能力和故障自愈能力使其在军用车辆中的应用更具吸引力。此外,CAN总线的成本效益也是其在军用领域得到广泛应用的一个重要因素。 文章详细介绍了CAN总线的工作原理和特点,比如它的仲裁机制能够有效管理多个节点间的通信,避免冲突,同时其低数据速率适合于军用车辆的实时通信需求。在介绍完CAN总线的优势后,文章还可能探讨了实际应用中的挑战,如如何确保网络的安全性、如何进行有效的系统集成等问题,以及如何通过研发和优化来克服这些挑战。 本文通过对CAN总线特性的深入剖析,证明了将其应用于军用车辆是切实可行且具有重大意义的,为军用车辆电子系统的现代化和成本效益最大化提供了新的思路和技术路径。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【图结构优化】:在JavaScript中实现与提升性能的策略

![【图结构优化】:在JavaScript中实现与提升性能的策略](https://d14b9ctw0m6fid.cloudfront.net/ugblog/wp-content/uploads/2020/10/4.png) # 1. 图结构基础与JavaScript中的应用场景 ## 图结构基础概念 图是一种非线性数据结构,由一系列节点(顶点)和连接节点的边组成。它能够用来模拟复杂的关系网络,比如社交网络、互联网、交通网络等。在图结构中,有无向图和有向图之分,分别用来表示关系是否具有方向性。 ## 图结构的基本操作 图结构的操作包括添加或删除节点和边、寻找两个节点之间的路径、计算顶点的度
recommend-type

qml+ffmpeg编写视频播放器

QML (Qt Markup Language) 和 FFmpeg 的结合可以用于创建功能丰富的视频播放器。QML 是一种声明式的、基于模型视图的用户界面语言,它是 Qt 框架的一部分,非常适合构建跨平台的应用程序。FFmpeg 则是一个强大的多媒体框架,特别擅长处理音频和视频流。 在 QML 中编写视频播放器,通常会用到以下几个步骤: 1. **设置环境**:首先确保你已经在项目中安装了 Qt 开发工具,并配置好 FFmpeg 库,这通常是通过系统库或包含 FFmpeg 源码的 build 配置完成。 2. **引入模块**:在 QML 文件中引入 `QtQuick.Controls`