% PM2.5预测模型程序% 数据读取data = xlsread('data.xlsx');X = data(:, 1:6); % 前六列为气象数据特征y = data(:, 7); % 最后一列为PM2.5值% 数据预处理X = normalize(X); % 数据标准化处理y = log(y); % 对PM2.5值进行对数变换% 特征工程X = [X, X.^2]; % 加入二次项特征% 模型选择与训练model = fitrsvm(X, y, 'KernelFunction', 'rbf', 'KernelScale', 'auto', 'BoxConstraint', 1, 'Epsilon', 0.1); % 使用SVR算法进行模型训练% 模型评估y_pred = exp(predict(model, X)); % 对预测值进行指数变换rmse = sqrt(mean((y_pred - y).^2)); % 计算均方根误差% 模型应用new_data = [23, 20, 1013, 63, 2, 0.2]; % 输入新的气象数据new_data = normalize(new_data); % 数据标准化处理new_data = [new_data, new_data.^2]; % 加入二次项特征new_pm25 = exp(predict(model, new_data)); % 预测新的PM2.5值
时间: 2024-04-02 14:34:19 浏览: 80
基于机器学习的PM2.5预测与分析系统+源代码+文档说明
5星 · 资源好评率100%
这段代码实现了一个PM2.5预测模型,包括数据读取、数据预处理、特征工程、模型选择与训练、模型评估和模型应用。具体来说,该模型使用了SVR算法进行训练,并使用均方根误差来评估模型的预测能力。
在这段代码中,数据读取使用了MATLAB内置函数`xlsread`,可以读取Excel文件中的数据。接下来,对气象数据特征进行了标准化处理和对PM2.5值进行了对数变换,以便更好地适应模型。然后,加入了二次项特征以提高模型的复杂度和预测能力。在模型选择与训练中,使用了`fitrsvm`函数进行训练,其中`KernelFunction`参数指定了核函数的类型,`KernelScale`参数指定了核函数的缩放因子,`BoxConstraint`参数指定了模型的容错因子,`Epsilon`参数指定了模型的边界容错因子。在模型评估中,使用了均方根误差来评估模型在训练集上的预测能力。最后,在模型应用中,给出了一个新的气象数据,进行了标准化处理和二次项特征加入,并使用训练好的模型进行了PM2.5值的预测。
阅读全文