Polynomial subtract(const Polynomial& p1, const Polynomial& p2) { Node* curr1 = p1.head; Node* curr2 = p2.head; Polynomial result; while (curr1 && curr2) { if (curr1->exp > curr2->exp) { result.insert(curr1->coeff, curr1->exp); curr1 = curr1->next; } else
时间: 2024-04-21 17:28:41 浏览: 52
if (curr1->exp < curr2->exp) { result.insert(-curr2->coeff, curr2->exp); curr2 = curr2->next; } else { double tempCoeff = curr1->coeff - curr2->coeff; if (tempCoeff != 0) { result.insert(tempCoeff, curr1->exp); } curr1 = curr1->next; curr2 = curr2->next; } } while (curr1) { result.insert(curr1->coeff, curr1->exp); curr1 = curr1->next; } while (curr2) { result.insert(-curr2->coeff, curr2->exp); curr2 = curr2->next; } return result; }
以上是一个多项式相减的函数实现,你有什么问题吗?
相关问题
class Polynomial { public: Polynomial() : head(nullptr) {} ~Polynomial() { Node* curr = head; while (curr) { Node* temp = curr->next; delete curr; curr = temp; } } void insert(int coeff, int exp) { Node* curr = head; Node* prev = nullptr; while (curr && curr->exp > exp) { prev = curr; curr = curr->next; } if (curr && curr->exp == exp) { curr->coeff += coeff; if (curr->coeff == 0) { if (prev) { prev->next = curr->next; } else { head = curr->next; } delete curr; } } else { Node* newNode = new Node(coeff, exp); if (prev) { prev->next = newNode; } else { head = newNode; } newNode->next = curr; } } void print() const { Node* curr = head; while (curr) { std::cout << curr->coeff << "x^" << curr->exp << " "; curr = curr->next; } std::cout << std::endl; } Node* head; // 多项式头结点 }; Polynomial add(const Polynomial& p1, const Polynomial& p2) { Node* curr1 = p1.head; Node* curr2 = p2.head; Polynomial result; while (curr1 && curr2) { if (curr1->exp > curr2->exp) { result.insert(curr1->coeff, curr1->exp); curr1 = curr1->next; } else if (curr1->exp < curr2->exp) { result.insert(curr2->coeff, curr2->exp); curr2 = curr2->next; } else { int sum = curr1->coeff + curr2->coeff; result.insert(sum, curr1->exp); curr1 = curr1->next; curr2 = curr2->next; } } while (curr1) { result.insert(curr1->coeff, curr1->exp); curr1 = curr1->next; } while (curr2) { result.
在这段代码中,定义了一个多项式类 Polynomial,其中包含一个链表结构,每个节点表示多项式的一个单项式,具有系数和指数两个成员变量。类中包含了一个插入单项式的方法 insert,一个打印多项式的方法 print,还有一个多项式相加的全局函数 add。在 add 函数中,使用了两个指针 curr1 和 curr2 分别指向两个多项式的头结点,通过比较指数的大小,向结果多项式中依次插入单项式,如果指数相同则将系数相加。最后将指针剩下的单项式插入到结果多项式中。
Polynomial add(const Polynomial& p1, const Polynomial& p2) { Node* curr1 = p1.head; Node* curr2 = p2.head; Polynomial result; while (curr1 && curr2) { if (curr1->exp > curr2->exp) { result.insert(curr1->coeff, curr1->exp); curr1 = curr1->next; } else if (curr1->exp < curr2->exp) { result.insert(curr2->coeff, curr2->exp); curr2 = curr2->next; } else { int sum = curr1->coeff + curr2->coeff; result.insert(sum, curr1->exp); curr1 = curr1->next; curr2 = curr2->next; } } while (curr1) { result.insert(curr1->coeff, curr1->exp); curr1 = curr1->next; } while (curr2) { result.insert(curr2->coeff, curr2->exp); curr2 = curr2->next; } return result; }
这段代码实现了两个多项式相加的函数 add,它使用了之前实现的多项式类。具体实现是通过遍历两个多项式的链表,将它们的系数相加并插入到结果多项式中。如果某个多项式已经遍历完,则将剩余的节点插入到结果多项式中。最后返回结果多项式。
需要注意的是,这个函数返回的是一个新的多项式,而不是修改原有的多项式。因此,可以在调用该函数时传入 const 引用,以避免不必要的复制。
阅读全文