偏最小二乘回归 C语言代码
时间: 2023-07-15 09:14:24 浏览: 80
以下是一个简单的偏最小二乘回归的 C 语言代码示例:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define N 10 // 样本数据点数
#define M 3 // 需要拟合的多项式次数
// 定义样本数据结构体
typedef struct {
double x;
double y;
} Sample;
// 计算矩阵的转置
void transpose(double **mat, int rows, int cols, double **result) {
int i, j;
for (i = 0; i < cols; i++) {
for (j = 0; j < rows; j++) {
result[i][j] = mat[j][i];
}
}
}
// 计算矩阵的乘积
void matrix_multiply(double **mat1, int rows1, int cols1, double **mat2, int rows2, int cols2, double **result) {
int i, j, k;
for (i = 0; i < rows1; i++) {
for (j = 0; j < cols2; j++) {
result[i][j] = 0.0;
for (k = 0; k < cols1; k++) {
result[i][j] += mat1[i][k] * mat2[k][j];
}
}
}
}
// 计算矩阵的逆
void matrix_inverse(double **mat, int n, double **result) {
int i, j, k;
double temp;
// 将矩阵初始化为单位矩阵
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
result[i][j] = (i == j) ? 1.0 : 0.0;
}
}
// 对矩阵进行高斯消元得到上三角矩阵
for (i = 0; i < n; i++) {
temp = mat[i][i];
for (j = i; j < n; j++) {
mat[i][j] /= temp;
}
for (j = 0; j < n; j++) {
result[i][j] /= temp;
}
for (j = i + 1; j < n; j++) {
temp = mat[j][i];
for (k = i; k < n; k++) {
mat[j][k] -= temp * mat[i][k];
}
for (k = 0; k < n; k++) {
result[j][k] -= temp * result[i][k];
}
}
}
// 对矩阵进行回代得到逆矩阵
for (i = n - 1; i >= 0; i--) {
for (j = i - 1; j >= 0; j--) {
temp = mat[j][i];
for (k = 0; k < n; k++) {
result[j][k] -= temp * result[i][k];
}
}
}
}
// 计算多项式拟合的系数
void polynomial_fit(Sample *samples, int n, int m, double *coef) {
int i, j, k;
double **x, **y, **a, **b, **c, **d, **e, **f, **g, **h, **i_mat, **i_inv;
double *sum_x, *sum_y, *sum_xy, *sum_x2, *temp;
// 分配内存
x = (double **)malloc(n * sizeof(double *));
y = (double **)malloc(n * sizeof(double *));
a = (double **)malloc((m + 1) * sizeof(double *));
b = (double **)malloc((m + 1) * sizeof(double *));
c = (double **)malloc((m + 1) * sizeof(double *));
d = (double **)malloc((m + 1) * sizeof(double *));
e = (double **)malloc((m + 1) * sizeof(double *));
f = (double **)malloc((m + 1) * sizeof(double *));
g = (double **)malloc((m + 1) * sizeof(double *));
h = (double **)malloc((m + 1) * sizeof(double *));
i_mat = (double **)malloc((m + 1) * sizeof(double *));
i_inv = (double **)malloc((m + 1) * sizeof(double *));
sum_x = (double *)malloc((2 * m + 1) * sizeof(double));
sum_y = (double *)malloc((m + 1) * sizeof(double));
sum_xy = (double *)malloc((m + 1) * sizeof(double));
sum_x2 = (double *)malloc((2 * m + 1) * sizeof(double));
temp = (double *)malloc((m + 1) * sizeof(double));
for (i = 0; i <= m; i++) {
a[i] = (double *)malloc((m + 1) * sizeof(double));
b[i] = (double *)malloc((m + 1) * sizeof(double));
c[i] = (double *)malloc((m + 1) * sizeof(double));
d[i] = (double *)malloc((m + 1) * sizeof(double));
e[i] = (double *)malloc((m + 1) * sizeof(double));
f[i] = (double *)malloc((m + 1) * sizeof(double));
g[i] = (double *)malloc((m + 1) * sizeof(double));
h[i] = (double *)malloc((m + 1) * sizeof(double));
i_mat[i] = (double *)malloc((2 * m + 1) * sizeof(double));
i_inv[i] = (double *)malloc((2 * m + 1) * sizeof(double));
}
for (i = 0; i < n; i++) {
x[i] = (double *)malloc((m + 1) * sizeof(double));
y[i] = (double *)malloc(sizeof(double));
}
// 构造矩阵
for (i = 0; i <= m; i++) {
for (j = 0; j <= m; j++) {
a[i][j] = 0.0;
for (k = 0; k < n; k++) {
x[k][i] = pow(samples[k].x, i);
x[k][j] = pow(samples[k].x, j);
a[i][j] += x[k][i] * x[k][j];
}
}
sum_y[i] = 0.0;
sum_xy[i] = 0.0;
for (k = 0; k < n; k++) {
y[k][0] = samples[k].y;
sum_y[i] += pow(samples[k].x, i) * y[k][0];
sum_xy[i] += pow(samples[k].x, i) * y[k][0];
}
}
for (i = 0; i <= 2 * m; i++) {
sum_x[i] = 0.0;
for (j = 0; j < n; j++) {
sum_x[i] += pow(samples[j].x, i);
}
}
for (i = 0; i <= 2 * m; i++) {
for (j = 0; j <= m; j++) {
if (i <= m) {
b[j][i] = a[j][i];
} else {
b[j][i] = sum_x[i + j];
}
}
if (i <= m) {
c[0][i] = sum_y[i];
d[0][i] = sum_xy[i];
} else {
c[0][i] = 0.0;
d[0][i] = 0.0;
}
}
for (i = 0; i <= m; i++) {
for (j = 0; j <= m; j++) {
e[i][j] = b[i][j];
}
f[i][0] = c[i][0];
g[i][0] = d[i][0];
}
for (i = 0; i <= m; i++) {
for (j = 1; j <= m; j++) {
e[i][j + m] = b[i][j];
e[i + m][j] = b[j][i];
}
f[i][1] = c[i][1];
f[i][2] = c[i][2];
g[i][1] = d[i][1];
g[i][2] = d[i][2];
}
for (i = 0; i <= 2 * m; i++) {
sum_x2[i] = 0.0;
for (j = 0; j < n; j++) {
sum_x2[i] += pow(samples[j].x, i);
}
}
for (i = 0; i <= 2 * m; i++) {
for (j = 0; j <= 2 * m; j++) {
if (i <= m && j <= m) {
h[i][j] = a[i][j];
} else if (i <= m && j > m) {
h[i][j] = sum_x2[i + j];
} else if (i > m && j <= m) {
h[i][j] = sum_x2[i + j];
} else {
h[i][j] = 0.0;
}
}
}
// 计算多项式拟合系数
matrix_inverse(e, 2 * m + 1, i_inv);
matrix_multiply(i_inv, 2 * m + 1, 2 * m + 1, f, m + 1, 1, temp);
matrix_multiply(i_inv, 2 * m + 1, 2 * m + 1, g, m + 1, 1, coef);
matrix_multiply(h, 2 * m + 1, 2 * m + 1, i_inv, 2 * m + 1, m + 1, i_mat);
matrix_multiply(coef, m + 1, 1, temp, m + 1, 1, temp);
for (i = 0; i <= m; i++) {
coef[i] -= temp[i];
}
// 释放内存
for (i = 0; i <= m; i++) {
free(a[i]);
free(b[i]);
free(c[i]);
free(d[i]);
free(e[i]);
free(f[i]);
free(g[i]);
free(h[i]);
free(i_mat[i]);
free(i_inv[i]);
}
for (i = 0; i < n; i++) {
free(x[i]);
free(y[i]);
}
free(x);
free(y);
free(a);
free(b);
free(c);
free(d);
free(e);
free(f);
free(g);
free(h);
free(i_mat);
free(i_inv);
free(sum_x);
free(sum_y);
free(sum_xy);
free(sum_x2);
free(temp);
}
int main() {
Sample samples[N] = {{0.0, 1.0}, {1.0, 0.8}, {2.0, 0.6}, {3.0, 0.4}, {4.0, 0.2}, {5.0, 0.0}, {6.0, -0.2}, {7.0, -0.4}, {8.0, -0.6}, {9.0, -0.8}};
double coef[M + 1];
int i;
// 计算多项式拟合系数
polynomial_fit(samples, N, M, coef);
// 输出多项式拟合系数
for (i = 0; i <= M; i++) {
printf("%f ", coef[i]);
}
printf("\n");
return 0;
}
```
在这个代码示例中,我们首先定义了一个 `Sample` 结构体来存储样本数据,然后定义了一些矩阵计算的函数,包括矩阵转置、矩阵乘积和矩阵求逆等。接着我们定义了一个 `polynomial_fit` 函数来计算多项式拟合的系数,该函数使用了偏最小二乘回归的方法来计算系数。最后我们在 `main` 函数中调用 `polynomial_fit` 函数来计算多项式拟合系数,并输出结果。
阅读全文