偏最小二乘回归c语言实现
时间: 2023-09-22 20:03:21 浏览: 106
偏最小二乘回归(Partial Least Squares Regression,PLSR)是一种统计回归方法,用于处理多元回归问题。与普通最小二乘回归相比,PLSR可以在存在多个自变量之间的共线性或高维数据情况下,减小模型的复杂度,提高预测性能。
实现偏最小二乘回归的C语言代码如下:
```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define MAX_ROWS 100
#define MAX_COLS 100
void PLSR(double X[MAX_ROWS][MAX_COLS], double y[MAX_ROWS], int n, int p, int m) {
double T[MAX_ROWS][MAX_COLS]; // Score matrix
double P[MAX_COLS][MAX_COLS]; // Loading matrix
double W[MAX_COLS][MAX_COLS]; // Weight matrix
double C[MAX_COLS][MAX_COLS]; // Regression coefficient matrix
double B[MAX_COLS]; // Regression coefficient vector
double E[MAX_ROWS]; // Residuals vector
double w[MAX_COLS]; // Current weight vector
double t[MAX_ROWS]; // Current score vector
double p[MAX_COLS]; // Current loading vector
double c[MAX_COLS]; // Current regression coefficient vector
int i, j, k;
// Initializing matrices
for (i = 0; i < m; i++) {
for (j = 0; j < p; j++) {
W[i][j] = 0.0;
}
}
// Performing PLSR iterations
for (k = 0; k < m; k++) {
for (i = 0; i < p; i++) {
w[i] = 0.0;
for (j = 0; j < n; j++) {
w[i] += X[j][i] * y[j];
}
for (j = 0; j < i; j++) {
w[i] -= p[j] * W[k][j];
}
for (j = 0; j < i; j++) {
w[i] /= sqrt(P[j][j]);
}
}
double w_norm = 0.0;
for (i = 0; i < p; i++) {
w_norm += w[i] * w[i];
}
w_norm = sqrt(w_norm);
for (i = 0; i < p; i++) {
w[i] = w[i] / w_norm;
}
for (i = 0; i < n; i++) {
t[i] = 0.0;
for (j = 0; j < p; j++) {
t[i] += X[i][j] * w[j];
}
}
double t_norm = 0.0;
for (i = 0; i < n; i++) {
t_norm += t[i] * t[i];
}
t_norm = sqrt(t_norm);
for (i = 0; i < n; i++) {
t[i] = t[i] / t_norm;
}
for (i = 0; i < p; i++) {
p[i] = 0.0;
for (j = 0; j < n; j++) {
p[i] += X[j][i] * t[j];
}
for (j = 0; j < k; j++) {
p[i] -= P[j][i] * W[k][j];
}
p[i] = p[i] / (t_norm * t_norm);
}
for (i = 0; i < n; i++) {
for (j = 0; j < p; j++) {
X[i][j] -= t[i] * p[j];
}
}
for (i = 0; i < p; i++) {
P[k][i] = p[i];
W[k][i] = w[i];
}
c[k] = 0.0;
for (i = 0; i < n; i++) {
c[k] += y[i] * t[i];
}
c[k] = c[k] / (t_norm * t_norm);
for (i = 0; i < n; i++) {
y[i] -= c[k] * t[i];
}
}
for (i = 0; i < m; i++) {
B[i] = 0.0;
for (j = 0; j < m; j++) {
B[i] += W[i][j] * c[j];
}
}
// Print the regression coefficient vector
printf("Regression Coefficient Vector: ");
for (i = 0; i < m; i++) {
printf("%lf ", B[i]);
}
printf("\n");
}
int main() {
// Sample data
double X[MAX_ROWS][MAX_COLS] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
double y[MAX_ROWS] = {10, 11, 12};
int n = 3; // Number of data points
int p = 3; // Number of independent variables
int m = 1; // Number of components
PLSR(X, y, n, p, m); // Perform PLSR
return 0;
}
```
这是一个简单的实现,可根据实际需求进行修改和优化。请注意,以上代码仅用于示范,并不包含完整的错误处理和边界情况处理。
阅读全文