uNITY string 赚转枚举
时间: 2023-08-30 15:09:51 浏览: 113
初始化模型和优化器
model = ResNet(BasicBlock, [2, 2, 2, 2]).to(device)
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
criterion = nn.CrossEntropyLoss在Unity中,可以使用字符串来表示枚举的值,并且可以通过转换函数将字符串转换为枚举类型。()
# 训练模型
def train(model, train_loader, optimizer, criterion):
model.train()
for images, labels以下是一个示例代码:
```csharp
public enum MyEnum
{
Option1,
Option2,
Option3
in train_loader:
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs =}
public static class EnumConverter
{
public static MyEnum StringToEnum(string value)
{
return (MyEnum)System.Enum model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
def test(model, test_loader, criterion.Parse(typeof(MyEnum), value);
}
public static string EnumToString(MyEnum value)
{
return value.ToString();
}
}
):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for images, labels// 使用示例
string enumString = "Option2";
MyEnum enumValue = EnumConverter.StringToEnum(enumString);
Debug.Log(enum in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss =Value); // 输出:Option2
MyEnum myEnum = MyEnum.Option3;
string myEnumString = EnumConverter.EnumToString(myEnum criterion(outputs, labels)
test_loss += loss.item()
_, predicted = outputs.max(1)
correct += predicted.eq(labels);
Debug.Log(myEnumString); // 输出:Option3
```
在上面的示例中,`MyEnum`是一个).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset简单的枚举类型。`EnumConverter`类提供了两个静态方法,`StringToEnum`用于将)
print(f"Test Loss: {test_loss:.4f}, Accuracy: {accuracy:.2f}%")
# 开始训字符串转换为枚举值,`EnumToString`用于将枚举值转换为字符串。你可以根据自己的需求修改这些代码来适应你的具体情况。
阅读全文