Keras实现CA注意力机制
时间: 2023-07-08 07:36:52 浏览: 163
CA(Channel Attention)注意力机制是一种用于图像分类和目标检测的注意力机制。Keras实现CA注意力机制的步骤如下:
1. 定义输入
```
inputs = Input(shape=(height, width, channels))
```
2. 定义卷积层
```
x = Conv2D(filters=filters, kernel_size=kernel_size, strides=strides, padding='same')(inputs)
```
3. 定义全局平均池化层
```
pooling = GlobalAveragePooling2D()(x)
```
4. 定义全连接层
```
fc = Dense(units=units)(pooling)
```
5. 定义激活函数
```
activation = Activation('relu')(fc)
```
6. 定义softmax层
```
softmax = Dense(units=filters, activation='softmax')(activation)
```
7. 定义乘法层
```
multiply = Multiply()([x, softmax])
```
8. 定义输出
```
outputs = multiply
```
完整代码如下:
```
from keras.layers import Input, Conv2D, GlobalAveragePooling2D, Dense, Activation, Multiply
from keras.models import Model
def ca_block(inputs, filters, kernel_size, strides):
x = Conv2D(filters=filters, kernel_size=kernel_size, strides=strides, padding='same')(inputs)
pooling = GlobalAveragePooling2D()(x)
fc = Dense(units=filters)(pooling)
activation = Activation('relu')(fc)
softmax = Dense(units=filters, activation='softmax')(activation)
multiply = Multiply()([x, softmax])
outputs = multiply
return outputs
inputs = Input(shape=(height, width, channels))
ca = ca_block(inputs, filters=64, kernel_size=3, strides=1)
outputs = ca_block(ca, filters=64, kernel_size=3, strides=1)
model = Model(inputs=inputs, outputs=outputs)
```
阅读全文